Concurrency in Java

EECS 4315

WWww.Ccse.yorku.ca/course/4315/

EECS 4315 1/29


www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/

The Readers-Writers Problem

The readers and writers problem, due to Courtois, Heymans
and Parnas, is a classical concurrency problem. It models
access to a database. There are many competing threads
wishing to read from and write to the database. It is acceptable
to have multiple threads reading at the same time, but if one
thread is writing then no other thread may either read or write.
A thread can only write if no thread is reading.

EECS 4315 2/29


www.cse.yorku.ca/course/4315/

Canadian early pioneer of
software engineering

Ph.D. from Carnegie Mellon
University

Taught at the University of
North Carolina at Chapel Hill,
the Technische Universitat
Darmstadt, the University of
Victoria, Queen’s University,
McMaster University, and
University of Limerick

Won numerous awards ,
including ACM SIGSOFT’s David Parnas
“Outstanding Research” source: Fubert Baumeister
award

EECS 4315 3/29


www.cse.yorku.ca/course/4315/

Pierre-Jacques Courtois

@ Professor emeritus at the
Catholic University of Leuven

b7
Pierre-Jacques Courtois

source: www.info.ucl.ac.be/~courtois

EECS 4315 4/29


www.cse.yorku.ca/course/4315/

The Readers-Writers Problem

public class Reader extends Thread {
private Database database;

public Reader (Database database) {
this.database = database;

public void run() {
while (true) {
try {
this.database.read();
} catch (InterruptedException e) ({
e.printStackTrace();

EECS 4315 5/29


www.cse.yorku.ca/course/4315/

The Readers-Writers Problem

public class Database {

public Database() { ... }

public void read() { ... }

public void write() { ... }
}

EECS 4315 6/29


www.cse.yorku.ca/course/4315/

The Dining Philosophers Problem

In the dining philosophers problem, due to Dijkstra, five
philosophers are seated around a round table. Each
philosopher has a plate of spaghetti. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The layout
of the table is as follows.

The life of a philosopher consists of alternative periods of
eating and thinking. When philosophers get hungry, they try to
pick up their left and right fork, one at a time, in either order. If
successful in picking up both forks, the philosopher eats for a
while, then puts down the forks and continues to think.

EECS 4315 7/29


www.cse.yorku.ca/course/4315/

Introduction to Java PathFinder

EECS 4315

WwWw.cse.yorku.ca/course/4315/

EECS 4315 8/29


www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/

In 1999, Klaus Havelund introduced Java PathFinder (JPF).

Klaus Havelund. Java PathFinder — A Translator from Java to
Promela. In, Dennis Dams, Rob Gerth, Stefan Leue and Mieke
Massink, editors, Proceedings of the 5th and 6th International
SPIN Workshops, volume 1680 of Lecture Notes in Computer
Science, page 152. Springer-Verlag.

EECS 4315 9/29


www.cse.yorku.ca/course/4315/

Klaus Havelund

@ PhD in Computer Science
from the University of
Copenhagen.

@ Senior Research Scientist at
NASA’s Jet Propulsion
Laboratory.

@ ASE 2014 most influential
paper award.

Source: Klaus Havelund

EECS 4315 10/29


www.cse.yorku.ca/course/4315/

Others who initially worked on JPF:
@ Michael Lowry (NASA)
@ John Penix (NASA, now Google)
@ Thomas Pressburger (NASA)
@ Jens Ulrik Skakkebaek (Stanford, now Google)
@ Willem Visser (NASA, now Stellenbosch University)

EECS 4315 11/29


www.cse.yorku.ca/course/4315/

First Version of JPF

] Java source code \

@Iator

] Promela code \

] SPIN model checker \

EECS 4315 12/29


www.cse.yorku.ca/course/4315/

First Version of JPF

Major limitations:
@ Representing all features of Java in Promela effectively is
very difficult (if not even impossible);
@ Mapping bugs found by SPIN in the Promela code back to
the Java code is challenging.

EECS 4315 13/29



www.cse.yorku.ca/course/4315/

Second Version of JPF

Java bytecode }—>&Pﬂ—>‘m‘

’ configuration files ‘

The second version of JPF is a Java virtual machine (JVM).

EECS 4315 14/29


www.cse.yorku.ca/course/4315/

Second Version of JPF

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon
Park. Model Checking Programs. In Proceedings of the 15th
IEEE International Conference on Automated Software
Engineering, pages 3—12, Grenoble, France, September 2000.
IEEE

The Automated Software Engineering conference series has a
rich history of good contributions to the area of research and
development. The ASE most influential paper award is an effort
to identity the most influential ASE paper 14 years after being
published. In 2014, the above paper won this award.

EECS 4315 15/29


www.cse.yorku.ca/course/4315/

Simple Example

import java.util.Random;

public class PrintRandom

{

public static void main(String[] args)
{

Random random = new Random();
final int MAX = 9;
System.out.println(random.nextInt (MAX + 1));

EECS 4315 16/29


www.cse.yorku.ca/course/4315/

Simple Example

target=PrintRandom
classpath=.

EECS 4315 17/29


www.cse.yorku.ca/course/4315/

Simple Example
JavaPathfinder core system v8.0 (rev 2+) - (C) 2005

PrintRandom.main ()

no errors detected

elapsed time: 00:00:00
states: new=1l,visited=0, backtracked=1,e

EECS 4315 18/29


www.cse.yorku.ca/course/4315/

Simple Example

To how many different executions may the Java code give rise? \

EECS 4315 19/29


www.cse.yorku.ca/course/4315/

Simple Example

To how many different executions may the Java code give rise? l
10. I

EECS 4315 19/29


www.cse.yorku.ca/course/4315/

Simple Example

To how many different executions may the Java code give rise? l
10. I

How many different executions does JPF check? l

EECS 4315 19/29


www.cse.yorku.ca/course/4315/

Simple Example

To how many different executions may the Java code give rise? l
10. I

How many different executions does JPF check? l
1. l

EECS 4315 19/29



www.cse.yorku.ca/course/4315/

Simple Example

Let’s have a look at the state space diagram.

target=PrintRandom
classpath=.
listener=gov.nasa. jpf.listener.StateSpaceDot

EECS 4315 20/29


www.cse.yorku.ca/course/4315/

Simple Example

EECS 4315 21/29


www.cse.yorku.ca/course/4315/

Simple Example

Configure JPF so that it explores all random choices.

EECS 4315 22/29


www.cse.yorku.ca/course/4315/

Simple Example

Configure JPF so that it explores all random choices.

target=PrintRandom
classpath=.

cg.enumerate_random=true
listener=gov.nasa. jpf.listener.StateSpaceDot

EECS 4315 22/29


www.cse.yorku.ca/course/4315/

Simple Example

JavaPathfinder core system v8.0 (rev 2+) - (C) 2005

PrintRandom.main ()

0
1
2
3
4
5
6
7
8
9

EECS 4315 23/29


www.cse.yorku.ca/course/4315/

Simple Example

Let’s have a look at the state space diagram.

target=PrintRandom
classpath=.

cg.enumerate_random=true
listener=gov.nasa. jpf.listener.StateSpaceDot

EECS 4315 24/29


www.cse.yorku.ca/course/4315/

Simple Example

EECS 4315 25/29


www.cse.yorku.ca/course/4315/

The ByteTest Revisited

In Lab 1, we wrote a JUnit test case to test the Byte class.

@ JPF can only be run on apps, that is, classes that contain a
main method.

@ By default JPF checks for uncaught exceptions.

EECS 4315 26/29


www.cse.yorku.ca/course/4315/

The ByteTest Revisited

package quiz;

import org.junit.runner.JUnitCore;
import org.Jjunit.runner.Result;
import org.Jjunit.runner.notification.Failure;

public class RunTest
{
public static void main(String[] args)
throws Throwable

Result result =
JUnitCore.runClasses (ByteTest.class);
for (Failure failure : result.getFailures())

{

throw failure.getException();

EECS 4315 27/29


www.cse.yorku.ca/course/4315/

The ByteTest Revisited

target=quiz.RunTest

classpath=.; /software/jars/junit-4.11. jar;\
/software/jars/hamcrest-core-1.3. jar

cg.enumerate_random=true

@ target contains both the class name and the package
name.

@ The JUnit jars need to be added to the classpath.

EECS 4315 28/29


www.cse.yorku.ca/course/4315/

The ByteTest Revisited

By default, JPF stops after detecting a bug.

EECS 4315 29/29


www.cse.yorku.ca/course/4315/

The ByteTest Revisited

By default, JPF stops after detecting a bug.

To find multiple bugs . ..

target=quiz.RunTest

classpath=.; /software/jars/junit-4.11. jar;\
/software/jars/hamcrest—-core-1.3. jar

cg.enumerate_random=true

search.multiple_errors=true

EECS 4315 29/29


www.cse.yorku.ca/course/4315/

