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Deadlock

Deadlock: two or more threads are each waiting for the other.
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Deadlock

Deadlock: two or more threads are each waiting for the other.

In Java, what causes a thread to wait for another thread? l
One thread waits for a lock held by another thread. l

Give a Java app in which one thread waits for the other and
vice versa.
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Deadlock

public class Locker extends Thread {
private Locker other;

public void setOther (Locker other) {
this.other = other;

public void run() {
synchronized (this) {
synchronized (this.other) {
// do nothing

}

System.out.println("done");
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Deadlock

public class TwoLocks {
public static void main(String[] args) {

Locker one = new Locker();
Locker another = new Locker();
one.setOther (another) ;
another.setOther (one) ;
one.start () ;
another.start () ;
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Deadlock

JPF checks by default for deadlocks.

target=TwoLocks
classpath=.
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Deadlock

Let’s have a look at the state space diagram.

target=Twolocks
classpath=.
listener=gov.nasa. jpf.listener.StateSpaceDot
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Deadlock

An example of the Java tutorial.
public class Friend {

private final String name;

public Friend(String name) {
this.name = name;

public String getName () {
return this.name;
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Deadlock

public synchronized void bow (Friend bower) {
System.out. format ("$s: %s has bowed to me!%n",
this.getName (), bower.getName());
bower .bowBack (this) ;

public synchronized void bowBack (Friend bower) ({
System.out. format ("%$s: %s has bowed back to me!
this.getName (), bower.getName());
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Deadlock

public class TwoFriends {
public static void main(String[] args) {
final Friend alphonse = new Friend("Alphonse");
final Friend gaston = new Friend("Gaston");
new Thread (new Runnable () {
public void run() { alphonse.bow(gaston); }
}) .start () ;
new Thread (new Runnable () {

public void run() { gaston.bow(alphonse); }
}) .start ();
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Anonymous Class

new Runnable () {
public void run() { alphonse.bow(gaston); }

iS an anonymous class expression.
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Anonymous Class

The anonymous class expression consists of
@ the new operator,
@ the name of an interface to implement or a class to extend,

@ parentheses that contain the arguments to a constructor,
just like a normal class instance creation expression,’

@ a body, which is a class declaration body.

"When you implement an interface, there is no constructor, so you use an
empty pair of parentheses
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Deadlock

JPF checks by default for deadlocks.

target=TwoFriends
classpath=.
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Deadlock

Let’s have a look at the state space diagram.

target=Friends
classpath=.
listener=gov.nasa. jpf.listener.StateSpaceDot
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Deadlock

An example that comes with JPF: DiningPhil

The Java source code of the JPF examples can be found in
jpf/jpf-core/src/examples/

The Java source code of the JPF examples can be found in
jpf/jpf-core/build/examples/
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Race Condition

Race condition: two threads access the same shared data at
the same time and at least one of the two threads writes.

Race conditions are also known as data races.

Race conditions are not bugs per se, but often indicate
potential trouble spots in the code.
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JPF’s Wikipedia Page
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JPF’s Wikipedia Page

Example [edi)
The following system under test contains a simple race condition between two threads accessing the same variable d in statements (1) and (2),

(2)

public class Racer implements Runnable
int d = 42;

public void run (

doSemething (

public static void main (String[] args){

Racer racer = new Racer();
Thread t = new Thread(racer);
= .

doSomething (1

int ¢ = 420
System.

static void doSomething (int n
try [ Thread.

n); } catch (InterruptedEsxception ix)
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