Deadlocks and Race Conditions

EECS 4315

WWww.Ccse.yorku.ca/course/4315/

EECS 4315 1/17

www.cse.yorku.ca/course/4315/
www.cse.yorku.ca/course/4315/

Deadlock

Deadlock: two or more threads are each waiting for the other.

EECS 4315 2/17

www.cse.yorku.ca/course/4315/

Deadlock

Deadlock: two or more threads are each waiting for the other.

In Java, what causes a thread to wait for another thread? l

EECS 4315 2/17

www.cse.yorku.ca/course/4315/

Deadlock

Deadlock: two or more threads are each waiting for the other.

In Java, what causes a thread to wait for another thread? l
One thread waits for a lock held by another thread. l

EECS 4315 2/17

www.cse.yorku.ca/course/4315/

Deadlock

Deadlock: two or more threads are each waiting for the other.

In Java, what causes a thread to wait for another thread? l
One thread waits for a lock held by another thread. l

Give a Java app in which one thread waits for the other and
vice versa.

EECS 4315 2/17

www.cse.yorku.ca/course/4315/

Deadlock

public class Locker extends Thread {
private Locker other;

public void setOther (Locker other) {
this.other = other;

public void run() {
synchronized (this) {
synchronized (this.other) {
// do nothing

}

System.out.println("done");

EECS 4315 3/17

www.cse.yorku.ca/course/4315/

Deadlock

public class TwoLocks {
public static void main(String[] args) {

Locker one = new Locker();
Locker another = new Locker();
one.setOther (another) ;
another.setOther (one) ;
one.start () ;
another.start () ;

EECS 4315 4/17

www.cse.yorku.ca/course/4315/

Deadlock

JPF checks by default for deadlocks.

target=TwoLocks
classpath=.

EECS 4315 5/17

www.cse.yorku.ca/course/4315/

Deadlock

Let’s have a look at the state space diagram.

target=Twolocks
classpath=.
listener=gov.nasa. jpf.listener.StateSpaceDot

EECS 4315 6/17

www.cse.yorku.ca/course/4315/

Deadlock

An example of the Java tutorial.
public class Friend {

private final String name;

public Friend(String name) {
this.name = name;

public String getName () {
return this.name;

EECS 4315 7/17

www.cse.yorku.ca/course/4315/

Deadlock

public synchronized void bow (Friend bower) {
System.out. format ("$s: %s has bowed to me!%n",
this.getName (), bower.getName());
bower .bowBack (this) ;

public synchronized void bowBack (Friend bower) ({
System.out. format ("%$s: %s has bowed back to me!
this.getName (), bower.getName());

EECS 4315 8/17

www.cse.yorku.ca/course/4315/

Deadlock

public class TwoFriends {
public static void main(String[] args) {
final Friend alphonse = new Friend("Alphonse");
final Friend gaston = new Friend("Gaston");
new Thread (new Runnable () {
public void run() { alphonse.bow(gaston); }
}) .start () ;
new Thread (new Runnable () {

public void run() { gaston.bow(alphonse); }
}) .start ();

EECS 4315 9/17

www.cse.yorku.ca/course/4315/

Anonymous Class

new Runnable () {
public void run() { alphonse.bow(gaston); }

iS an anonymous class expression.

EECS 4315 10/17

www.cse.yorku.ca/course/4315/

Anonymous Class

The anonymous class expression consists of
@ the new operator,
@ the name of an interface to implement or a class to extend,

@ parentheses that contain the arguments to a constructor,
just like a normal class instance creation expression,’

@ a body, which is a class declaration body.

"When you implement an interface, there is no constructor, so you use an
empty pair of parentheses

EECS 4315 11/17

www.cse.yorku.ca/course/4315/

Deadlock

JPF checks by default for deadlocks.

target=TwoFriends
classpath=.

EECS 4315 12/17

www.cse.yorku.ca/course/4315/

Deadlock

Let’s have a look at the state space diagram.

target=Friends
classpath=.
listener=gov.nasa. jpf.listener.StateSpaceDot

EECS 4315 13/17

www.cse.yorku.ca/course/4315/

Deadlock

An example that comes with JPF: DiningPhil

The Java source code of the JPF examples can be found in
jpf/jpf-core/src/examples/

The Java source code of the JPF examples can be found in
jpf/jpf-core/build/examples/

EECS 4315 14/17

www.cse.yorku.ca/course/4315/

Race Condition

Race condition: two threads access the same shared data at
the same time and at least one of the two threads writes.

Race conditions are also known as data races.

Race conditions are not bugs per se, but often indicate
potential trouble spots in the code.

EECS 4315 15/17

www.cse.yorku.ca/course/4315/

JPF’s Wikipedia Page

€ a

el
WIKIPEDIA
heFce Encyopedia

uan page
Contents

Featured content
Curent vents

About Wikipedia
Communiyportal
Racentchanges
Gontactpage

g e ikipadisorg

Article | Talk

Read | Edit | View history

Java Pathfinder

From Wikipedia, the free encyclopedia

ava JPF was developed at the NASA Ames Research Center and open sourced in 2005. The.
acronym JPF IS not o be confused with the unreiated Java Plugin Framework project,

The core of JPF is a Java Virtual Machine thatis

et specion

JPF has o fxed noion of state space branches and can handle both data and scheduling choices

"B 94 A 408

Java Pathfinder

Developer(s) asA

Stable roloase 6.0/November 30,2010

writienin ™

Operating system Cross-platorm

sue 1,54 (archivac)

e ‘Sofware vrfication ool
Vitsa machine

License Apachs License Version 2

Website g abeltsh arcnasa

raclples

Its primary application has been model checking of concurrent
programs, to find defects such as data races and deadlocks.

din Talk Confnbutons Creats account Login

a

16/17

www.cse.yorku.ca/course/4315/

JPF’s Wikipedia Page

Example [edi)
The following system under test contains a simple race condition between two threads accessing the same variable d in statements (1) and (2),

(2)

public class Racer implements Runnable
int d = 42;

public void run (

doSemething (

public static void main (String[] args){

Racer racer = new Racer();
Thread t = new Thread(racer);
= .

doSomething (1

int ¢ = 420
System.

static void doSomething (int n
try [Thread.

n); } catch (InterruptedEsxception ix)

17/17

www.cse.yorku.ca/course/4315/

