

What You Will Learn

- How programs are translated into the machine language
- And how the hardware executes them
- The hardware/software interface
- What determines program performanceAnd how it can be improved
- How the ALU works and how to improve its performance using pipelining.
- Memory Hierarchy and I/O (basic operation)

Why EECS2021

- Required
- You can not call yourself ECE or CS if you don't know pipelining, assembly, how to measure performance, or how to report performance.
- Knowledge of hardware helps you write better programs

Chapter 1 — Computer Abstractions and Technology — 7

MK

Chapter 1 — Computer Abstractions and Technology

Eight Great Ideas

- 1. Design for Moore's Law
- 2. Use Abstraction to Simplify Design
- 3. Make the Common case fast
- 4. Performance via Parallelism
- 5. Performance via Pipelining
- 6. Performance via Prediction
- 7. Hierarchy of Memories
- 8. Dependability via Redundancy

Chapter 1 — Computer Abstractions and Technology — 15

MK

	С	PI Example					
	 Computer A: Cycle Time = 250ps, CPI = 2.0 Computer B: Cycle Time = 500ps, CPI = 1.2 Same ISA Which is faster, and by how much? 						
		$CPUTime_{A} = Instruction Count \times CPI_{A} \times Cycle Time_{A}$					
		= I×2.0×250ps = I×500ps ← A is faster					
		$CPU Time_{B} = Instruction Count \times CPI_{B} \times Cycle Time_{B}$					
		= I×1.2×500ps = I×600ps					
		CPU TimeB I×600ps					
		CPU Time A I×500ps = 1.2					
Þ		Chapter 1 — Computer Abstractions and Technology — 40					

-		

Reporting Performance								
	Assume 3programs and 3 systems							
P1 P2 P3								
	A	10	8	25				
	B	12	9	20				
	- C	8	8	30				
	Arithmetic mean							
	Geometric mean							
	Chapter 1 – Computer Abstractions and Technology – 4							

Repo	rting Pe	rforma	nce				
2 Programs and 3 machines							
	А	В	С				
P1	1	10	20				
P2	1000	100	20				
Chapter 1 — Computer Abstractions and Technology — 46							

	SPEC Cfp2000							
+	Bencmark	Ultra5 t	Optero n	EPECR atio	Itanium 2	SPECR atio	O/I time	O/ISpe cR
	wupwise	1600	51.5	31.06	56.1	28.53	0.92	0.92
	Swim	3100	125	24.73	70.7	43.85	1.77	1.77
	Mgrid	1800	98	18.37	65.8	27.36	1.49	1.49
	Applu	2100	94	22.43	50.9	41.25	1.85	1.85
	Mesa	1400	64.6	21.69	108.0	12.99	0.6	0.6
	Galgel	2900	86.4	33.57	40.0	72.47	2.16	2.16
	Art	2600	92	28.13	21.0	123.67	4.40	4.40
	Equake	1300	72.6	17.92	36.3	35.78	2.00	2.00
	Facerec	1900	73.6	25.80	86.9	21.86	0.85	0.85
	Ammp	2200	136	16.14	132.0	16.63	1.03	1.03
	Lucas	2000	88.8	22.52	107.0	18.76	0.83	0.83
	Fma3d	2100	120	17.48	131.0	16.09	0.92	0.92
	Sixtrack	1100	123	8.95	68.8	15.99	1.79	1.79
	Aspi	2600	150	17.36	231.0	11.27	0.65	0.65
	GM			20.86		27.12	1.30	1.30

