The University of Adelaide, School of Computer Science

| Translation and Startup

C program
Many compilers produce
@ object modules directly
I Assembly language program ‘

‘ Object: Machine language module ‘ | Object: Library routine (machine language) l

Static linking

‘ Executable: Machine language program |

Chapter 2 — Instructions: Language of the Computer — 74

| Compiler

| Transforms HLL C programs into assembly

Why HLL

Fewer lines of code

Easier to understand and debug
Today’s optimizing compilers can produce
assembly code nearly as good as an
assembly language programming expert
and often better for large programs

Chapter 2 — Instructions: Language of the Computer — 75

Chapter 2 — Instructions: Language of the Computer

4 November 2016

The University of Adelaide, School of Computer Science

| Assembler Pseudoinstructions

| Syntax check

Most assembler instructions represent
machine instructions one-to-one
Pseudoinstructions: figments of the
assembler’s imagination

move $t0, $tl — add $t0, $zero, $tl

blt $t0, $t1, L — slt $at, $t0, $tl1
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 76

| Other Assembler’s Tasks

| Converts pseudo-instr’s to legal assembly code

Converts branches to far away locations into a
branch followed by a jump

Converts instructions with large immediates into
a lui followed by an ori

Converts numbers specified in decimal and
hexadecimal into their binary equivalents and
characters into their ASCII equivalents

Deals with data layout directives (e.g., .ascii1z)

Expands macros (frequently used sequences of
instructions)

Chapter 2 — Instructions: Language of the Computer — 77

Chapter 2 — Instructions: Language of the Computer

4 November 2016

The University of Adelaide, School of Computer Science

Chapter 2 — Instructions: Language of the Computer — 78

| Producing an Object Module

| Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete

program from the pieces
Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program
On MIPS, j, and jal,also lw $tl, 100($zero)

Symbol table: global definitions and external refs
Debug info: for associating with source code

$sp

$gp

PC

Mem Map /O

Kernel Code

& Data

fffffffc

| Tffffffc

—11000 8000
1000 0000
Text
Segment
0040 0000
Reserv
eaerved 0000 0000

IMIPS (spim) memory Allocation

230
words

Chapter 2 — Instructions: Language of the Computer — 79

Chapter 2 — Instructions: Language of the Computer

4 November 2016

The University of Adelaide, School of Computer Science

Gbl? Symbol Address - daFa
.align 0
str 1000 0000 str: .asciiz "The answer is "
cr 1000 000b cr: .asciiz "\n"
yes |main 0040 0000 -t‘i{‘t X
-align
loop 0040 000c _globl main
brnc 0040 001c -globl printf
done 0040 0024 main: ori $2, $0, 5 0040 0000
_ syscall 0040 0004
yes |printf | 272727227277 move $8, $2 0040 0008

loop: beq $8, $9, done 0040000c

Relocation Inf
elocation Info blt $8, $9, brnc 00400010

Address Data/Instr sub $8, $8, $9 00400014
1000 0000 |str J loop 0040 0018
1000 000b | cr brnc: sub $9, $9, $8 0040 001c

] loop

0040 0018 J loop done: jal printf

0040 0020 |j loop

0040 0024 | jal printf

Chapter 2 — Instructions: Language of the Computer — 80

Linking Object Modules

Produces an executable image
Merges segments
Resolve labels (determine their addresses)
Patch location-dependent and external refs
Could leave location dependencies for
fixing by a relocating loader
But with virtual memory, no need to do this

Program can be loaded into absolute location
in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 81

Chapter 2 — Instructions: Language of the Computer

4 November 2016

The University of Adelaide, School of Computer Science 4 November 2016

| Linking Two Object Files
Executable
|
+ i
File 2
2 e \‘
sl ()]
s ?
"é’ D
w
g —
i
[r—
N E,%’ '//g ______________________
x
o [
@
1 -
5 5
I I
Chapter 2 — Instructions: Language of the Computer — 82

| Loading a Program

| Load from image file on disk into memory
Read header to determine segment sizes
Create virtual address space
Copy text and initialized data into memory

Or set page table entries so they can be faulted in

Set up arguments on stack
Initialize registers (including $sp, $fp, $gp)
Jump to startup routine

Copies arguments to $a0, ... and calls main
When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 83

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science 4 November 2016

| Dynamic Linking

| Statically linking libraries mean that the library becomes
part of the executable code

It loads the whole library even if only a small part is used (e.g.,
standard C library is 2.5 MB)

What if a new version of the library is released ?

(Lazy) dynamically linked libraries (DLL) — library
routines are not linked and loaded until a routine is called
during execution
The first time the library routine called, a
must
find the desired routine, remap it, and “link” it to the calling routine
(see book for more details)
DLLs require extra space for dynamic linking information, but do
not require the whole library to be copied or linked

Chapter 2 — Instructions: Language of the Computer — 84

| ARM & MIPS Similarities

| ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-bit 31 x 32-bit
Input/output Memory Memory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 85

Chapter 2 — Instructions: Language of the Computer 6

The University of Adelaide, School of Computer Science 4 November 2016

| ARM Addressing Modes
|

Register operand

Immediate operand

Register + offset

Register + register (indexed)

Register + scaled register (scaled)
Register + offset and update register
Register + register and update register
Autoincrement, autodecrement

X X X X X X X X X

PC-relative data

Chapter 2 — Instructions: Language of the Computer — 86

| Compare and Branch in ARM

| Uses condition codes for result of an
arithmetic/logical instruction
Negative, zero, carry, overflow

Compare instructions to set condition codes
without keeping the result

Each instruction can be conditional
Top 4 bits of instruction word: condition value
Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 87

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science

gcd CMP
BEQ
BLT
SUBS
B
less
SUBS

end

|Unconditional

r0, r1

end

less

r0, r0, r1;
gcd

r1,r1,r0 ;
gcd

|Conditional Execution

Conditional

gcd
CMP r0, r1
SUBGT r0, r0, r1
SUBLE r1,r1,r0
BNE gcd

int gcd(int a,

{
while (a = b)

if (a>bh)
b;
else b = b
3
return a;

Chapter 2 — Instructions:

int b)

{

a=a -

- a;

Language of the Computer — 88

Register-register

Data transfer

MIPS

ARM
Jump/Call

MIPS

Instruction Encoding

3 28 27 20 19 16 15 12 11 43 0
[oo op® [ms ‘ Ra' | op® | me2*]
31 26 25 21 20 16 15 1110 65 0
| op° | Rst I Rs2* Rd® ‘ Const® | opx® |
31 28 27 2019 1615 12 11 0
[om] op' [ret* | mat] Const”? |
£l 26 25 21 20 16 15 0
| op® | Rs1 I Rd® ‘ Const"® |
31 28 27 24 23 0
[ow [o] Const' |
31 26 25 21 20 16 15 0
| op° | Rs1® | OpxIRsz® ‘ Const™® |
31 28 27 24 23 [
| Opx’ | op' | Const™ |
31 26 25 0
| op° | Const™® |
@ Opcede [Register O Constant

Chapter 2 — Instructions:

Language of the Computer — 89

Chapter 2 — Instructions: Language of the Computer

4 November 2016

The University of Adelaide, School of Computer Science 4 November 2016

| The Intel x86 ISA

| Evolution with backward compatibility

8080 (1974): 8-bit microprocessor
Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080
Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU
Segmented memory mapping and protection

80386 (1985): 32-bit extension (now 1A-32)
Additional addressing modes and operations
Paged memory mapping as well as segments

Chapter 2 — Instructions: Language of the Computer — 90

| The Intel x86 ISA

| Further evolution...

i486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...
Pentium (1993): superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium Il (1997)
New microarchitecture (see Colwell, The Pentium Chronicles)

Pentium 111 (1999)
Added SSE (Streaming SIMD Extensions) and associated
registers
Pentium 4 (2001)
New microarchitecture
Added SSEZ2 instructions

Chapter 2 — Instructions: Language of the Computer — 91

Chapter 2 — Instructions: Language of the Computer 9

The University of Adelaide, School of Computer Science 4 November 2016

| The Intel x86 ISA

| And further...

EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)
Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions

If Intel didn’t extend with compatibility, its
competitors would!
Technical elegance # market success

Chapter 2 — Instructions: Language of the Computer — 92

| The Intel x86 ISA
| SSES5 announced by AMD in 2007

170 instructions
Adds three operand instructions

Intel ships the Advanced Vector Extension
in 2011

Expands he SSE registers from 128 to 256
128 new instructions

Chapter 2 — Instructions: Language of the Computer — 93

Chapter 2 — Instructions: Language of the Computer 10

The University of Adelaide, School of Computer Science

Name
31

| Basic x86 Registers

Use
0

EAX

GPRO

ECX

GPR 1

GPR 2

GPR3

GPR 4

GPRS5

GPR 6

GPR7

cs

Code segment pointer

S5

Stack segment pointer (top of stack)

Ds

Data segment pointer 0

ES

Data segment pointer 1

Fs

Data segment pointer 2

GS

Data segment pointer 3

EIP

Instruction pointer (PC)

EFLAGS

Condition codes

Chapter 2 — Instructions: Language of the Computer — 94

| Basic x86 Addressing Modes

| Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

Memory addressing modes
Address in register
Address = R, ., + displacement
Address = R, + 25¢@ x R, .., (scale =0, 1, 2, or 3)
Address = R, + 2% x R,

+ displacement

ndex

Chapter 2 — Instructions: Language of the Computer — 95

Chapter 2 — Instructions: Language of the Computer

4 November 2016

11

The University of Adelaide, School of Computer Science 4 November 2016

| x86 Instruction Encoding

| Variable length
o encoding
T = | Postfix bytes specify
suov ol addressing mode
‘ MOV |d|w pugl"':we Displacement . .
” ' | Prefix bytes modify
o] operation
oo s . Operand length,
[0 [rea]] immodts repetition, locking, ...

{.TEST EDX, #42
7 1 8 32
| TEST ‘w| Postbyte } Immediate

Chapter 2 — Instructions: Language of the Computer — 96

| Implementing IA-32

| Complex instruction set makes
implementation difficult

Hardware translates instructions to simpler
microoperations

Simple instructions: 1-1
Complex instructions: 1-many

Microengine similar to RISC

Market share makes this economically viable
Comparable performance to RISC

Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 97

Chapter 2 — Instructions: Language of the Computer 12

