
4 November 2016

Chapter 2 — Instructions: Language of the Computer 1

EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

The slides are based on the publisher slides
and contribution from Profs Amir Asif and
Peter Lian
The slides will be modified, annotated,
explained on the board, and sometimes
corrected in the class

Chapter 2 — Instructions: Language of the Computer — 2

Conditional Operations

 Branch to a labeled instruction if a
condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

4 November 2016

Chapter 2 — Instructions: Language of the Computer 2

Conditional Operations

 beq $s0, $s1, L1

 bne $s0, $s1, L1

 Instruction format

Chapter 2 — Instructions: Language of the Computer — 3

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

5 16 17 L1

4 16 17 L1

How to specify L1

Specifying Branch Destination

 We could specify the memory location, but
that will require 32 bits ???

 Can use a base register, the base register
is PC

 Limits jumps to -215 215 -1

 In reality, 00 is appended to the immediate
thus instructions (words not bytes)

Chapter 2 — Instructions: Language of the Computer — 4

4 November 2016

Chapter 2 — Instructions: Language of the Computer 3

Branch destination

Chapter 2 — Instructions: Language of the Computer — 5

PC
Add

32

32 32
32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

Jump instruction

 J Label #go to label

 Again, concatenating 00 increase the
effective number to 28 + the left-most 4
bits of the PC (added to the PC)

Chapter 2 — Instructions: Language of the Computer — 6

op 26-bit address

6 bits

2 xxxx..xx

4 November 2016

Chapter 2 — Instructions: Language of the Computer 4

Jump instruction

Chapter 2 — Instructions: Language of the Computer — 7

PC4

26

32

00

from the low order 26 bits of the jump instruction

Chapter 2 — Instructions: Language of the Computer — 8

Branch Addressing

 Branch instructions specify
 Opcode, two registers, target address

 Most branch targets are near branch
 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4

 PC already incremented by 4 by this time

4 November 2016

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Jump Addressing

 Jump (j and jal) targets could be
anywhere in text segment
 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 10

Target Addressing Example

 Loop code from earlier example
 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

4 November 2016

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

i j

Chapter 2 — Instructions: Language of the Computer — 12

Compiling Loop Statements
 C code:
while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:
Loop: sll $t1, $s3, 2

add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Multiply i by 4

Address of
save[i]

save[i]

4 November 2016

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

Basic Blocks

 A basic block is a sequence of instructions
with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Compiling Case Statement

Chapter 2 — Instructions: Language of the Computer — 14

switch (k) {
case 0: h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/
case 2: h=i-j; break; /*k=2*/

 Assuming three sequential words in
memory starting at the address in $t4
have the addresses of the labels L0, L1,
and L2 and k is in $s2

add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $t1, $t1 #$t1 = 4*k
add $t1, $t1, $t4 #$t1 = addr of JumpT[k]
lw $t0, 0($t1) #$t0 = JumpT[k]
jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j
j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h
j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j

Exit: . . .

$t4

L2
L1
L0

Memory

4 November 2016

Chapter 2 — Instructions: Language of the Computer 8

Example

 Assemble the following machine code
beq $s0, $s1, Else
add $s3, $s0, $s1
j Exit

Else: sub $s3, $s0, $s1
Exit: ...

Chapter 2 — Instructions: Language of the Computer — 15

Example

Chapter 2 — Instructions: Language of the Computer — 16

0x00400020 4 16 17 2

0x00400024 0 16 17 19 0 0x20

0x00400028 2 0000 0100 0 ... 0 0011 002

0x0040002c 0 16 17 19 0 0x22

0x00400030 ...

jmp dst = (0x0) 0x040003 002(002)
= 0x00400030

4 November 2016

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 17

More Conditional Operations

 Set dest to 1 if a condition is true
 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 18

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠
 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

4 November 2016

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 19

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

