
EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

The slides are based on the publisher slides
and contribution from Profs Amir Asif and
Peter Lian
The slides will be modified, annotated,
explained on the board, and sometimes
corrected in the class

Chapter Summary
 Stored-program concept
 Assembly language
 Number representation
 Instruction representation
 Supporting procedures in hardware
 MIPS addressing
 Some real-world stuff
 Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

It is easy to see by formal-logical methods that there exist
certain [instruction sets] that are in abstract adequate to
control and cause the execution of any sequence of
operations The really decisive considerations from the
present point of view, in selecting an [instruction set], are
more of a practical nature:
simplicity of the equipment demanded by the [instruction
set], and the clarity of its application to the actually
important problems together with the speed of its handling
of those problems.

Burks, Goldstine, and von Neumann, 1947

Chapter 2 — Instructions: Language of the Computer — 3

Marketing and management will not usually ask
for a combination of features, cost, and schedule
that are simultaneously realizable – count on
that. They will reliably ask for the impossible. …
It’s a very short step from using Moore’s Law to
check your road map to using it to dictate the
road map.

Bob Colwell, The Pentium Chronicles

Chapter 2 — Instructions: Language of the Computer — 4

Stored-Program Concept
 Program instructions are stored in the

memory.
 Every cycle, an instruction is read from the

memory (fetched).
 The instruction is examined to decide what

to do (decode)
 Then we perform the operation stated in

the instruction (execute)
 Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer — 6

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets RISC vs. CISC

§2.1 Introduction

Chapter 2 — Instructions: Language of the Computer — 7

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

The Four Design Principles
1. Simplicity favors regularity.
2. Smaller is faster.
3. Make the common case fast.
4. Good design demands good

compromises

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer — 9

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination
add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 10

Arithmetic Example
 C code:
f = (g + h) - (i + j);

 Compiled MIPS code: (almost, this is not really assembly)

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 11

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 12

Chapter 2 — Instructions: Language of the Computer — 13

Register Operand Example
 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4
 Compiled MIPS code: (This is a real assembly)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 14

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian (The commercial MIPS, not
really, but in this course)
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Memory Access

Chapter 2 — Instructions: Language of the Computer — 15

Alignment restriction: requires
that objects fall on address that
is multiple of their size

0 1 2 3
Aligned

Not
Aligned

0 1 2 3

0 1 2 3

big endian MSB LSB

little endian LSB MSB

Bytes address

Another way to put it
Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address

Chapter 2 — Instructions: Language of the Computer — 16

"Little-Endian" by R. S. Shaw - Own work. Licensed under Public Domain via
Commons - https://commons.wikimedia.org/wiki/File:Little-
Endian.svg#/media/File:Little-Endian.svg

Big-Endian Little-Endian

Loading and Storing Bytes
 MIPS provides special instructions to move bytes

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the

rightmost 8 bits of the destination register
 what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory
 leaving the other bytes in the memory word

unchanged

Chapter 2 — Instructions: Language of the Computer — 17

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

Example

Chapter 2 — Instructions: Language of the Computer — 18

 Given the following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)
Memory

0x 0 0 9 0 1 2 A 0
Data

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 What value is left in $t0?

 What if the machine was little
Endian?

 What word is changed in Memory
and to what?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

$t0 = 0x00000012
mem(4) = 0xFF12FFFF0

4

8

12

16

20

24

Value not layout
?

