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Chapter Summary
 Stored-program concept
 Assembly language
 Number representation
 Instruction representation
 Supporting procedures in hardware
 MIPS addressing
 Some real-world stuff
 Fallacies and Pitfalls
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It is easy to see by formal-logical methods that there exist 
certain [instruction sets] that are in abstract adequate to 
control and cause the execution of any sequence of 
operations . . . . The really decisive considerations from the 
present point of view, in selecting an [instruction set], are 
more of a practical nature:
simplicity of the equipment demanded by the [instruction 
set], and the clarity of its application to the actually 
important problems together with the speed of its handling 
of those problems.

Burks, Goldstine, and von Neumann, 1947
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Marketing and management will not usually ask 
for a combination of features, cost, and schedule 
that are simultaneously realizable – count on 
that.  They will reliably ask for the impossible.  …  
It’s a very short step from using Moore’s Law to 
check your road map to using it to dictate the 
road map.

Bob Colwell, The Pentium Chronicles
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Stored-Program Concept
 Program instructions are stored in the 

memory.
 Every cycle, an instruction is read from the 

memory (fetched).
 The instruction is examined to decide what 

to do (decode)
 Then we perform the operation stated in 

the instruction (execute)
 Fetch-Decode-Execute cycle.
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Instruction Set
 The repertoire of instructions of a 

computer
 Different computers have different 

instruction sets
 But with many aspects in common

 Early computers had very simple 
instruction sets
 Simplified implementation

 Many modern computers also have simple 
instruction sets RISC vs. CISC

§2.1 Introduction
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The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage 
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and 

Appendixes B and E



The Four Design Principles
1. Simplicity favors regularity.
2. Smaller is faster.
3. Make the common case fast.
4. Good design demands good 

compromises
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Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination
add a, b, c  # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors 

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at 

lower cost

§2.2 O
perations of the C
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Arithmetic Example
 C code:
f = (g + h) - (i + j);

 Compiled MIPS code: (almost, this is not really assembly)

add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1
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Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32  32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H
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Register Operand Example
 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4
 Compiled MIPS code: ( This is a real assembly)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
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Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian (The commercial MIPS, not 
really, but in this course)
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address



Memory Access
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Alignment restriction:  requires 
that objects fall on address that 
is multiple of  their size

0      1      2      3
Aligned

Not
Aligned

0      1      2      3

0          1          2           3

big endian MSB                          LSB

little endian LSB                          MSB

Bytes address

Another way to put it
Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address
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"Little-Endian" by R. S. Shaw - Own work. Licensed under Public Domain via 
Commons - https://commons.wikimedia.org/wiki/File:Little-
Endian.svg#/media/File:Little-Endian.svg

Big-Endian Little-Endian



Loading and Storing Bytes
 MIPS provides special instructions to move bytes

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the 

rightmost 8 bits of the destination register
 what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a 
register and writes it to the byte in memory
 leaving the other bytes in the memory word 

unchanged
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lb $t0, 1($s3)  #load byte from memory

sb $t0, 6($s3)  #store byte to  memory



Example
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 Given the following code sequence and memory 
state what is the state of the memory after 
executing the code?

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)
Memory

0x 0 0 9 0 1 2 A 0
Data

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 What value is left in $t0?

 What if the machine was little 
Endian?

 What word is changed in Memory 
and to what?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

$t0 = 0x00000012
mem(4) = 0xFF12FFFF0

4

8

12

16

20

24

Value not layout
?


