
4 November 2016

Chapter 2 — Instructions: Language of the Computer 1

EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

The slides are based on the publisher slides
and contribution from Profs Amir Asif and
Peter Lian
The slides will be modified, annotated,
explained on the board, and sometimes
corrected in the class

Chapter 2 — Instructions: Language of the Computer — 2

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

4 November 2016

Chapter 2 — Instructions: Language of the Computer 2

Example

Chapter 2 — Instructions: Language of the Computer — 3

$3

$12

lbu $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 4

$3

$12

lb $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

4 November 2016

Chapter 2 — Instructions: Language of the Computer 3

Example

Chapter 2 — Instructions: Language of the Computer — 5

$3

$11

$12

sb $12, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1

Chapter 2 — Instructions: Language of the Computer — 6

Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

4 November 2016

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 8

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

4 November 2016

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 10

The Constant Zero

 MIPS register 0 ($zero) is the constant 0
 Cannot be overwritten

 Useful for common operations
 E.g., move between registers

add $t2, $s1, $zero

4 November 2016

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 12

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

4 November 2016

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 14

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

4 November 2016

Chapter 2 — Instructions: Language of the Computer 8

2’s Complement

Chapter 2 — Instructions: Language of the Computer — 15

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

complement all the bits

0101
and add a 1

0110 (6)

Chapter 2 — Instructions: Language of the Computer — 16

Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

