

## Byte/Halfword Operations

Could use bitwise operations
MIPS byte/halfword load/store

- String processing is a common case
lbrt, offset(rs) lh rt, offset(rs)
- Sign extend to 32 bits in rt

I bu rt, offset(rs) I hu rt, offset(rs)

- Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)
- Store just rightmost byte/halfword



## Example




## Memory Operand Example 1

C code:
$\mathrm{g}=\mathrm{h}+\mathrm{A}[8]$;

- g in $\$ \mathrm{~s} 1, \mathrm{~h}$ in $\$ \mathrm{~s} 2$, base address of A in $\$ \mathrm{~s} 3$


## Compiled MIPS code:

- Index 8 requires offset of 32

4 bytes per word
I w \$t 0, 32(\$s3) \# l oad word
add \$s1, \$s2, §t 0
offset
base register


## Memory Operand Example 2

C code:
A[ 12] $=$ h + A[ 8];

- h in \$s2, base address of A in $\$ \mathrm{~s} 3$

Compiled MIPS code:

- Index 8 requires offset of 32

I w \$t 0, 32(\$s3) \# l oad word
add \$t0, \$s2, \$t 0
sw \$t 0, 48(\$s3) \# store word

## Registers vs. Memory

Registers are faster to access than memory
Operating on memory data requires loads and stores

- More instructions to be executed
- Compiler must use registers for variables as much as possible
- Only spill to memory for less frequently used variables
- Register optimization is important!


## Immediate Operands

Constant data specified in an instruction addi \$s3, \$s3, 4
No subtract immediate instruction

- Just use a negative constant addi \$s2, \$s1, -1
Design Principle 3: Make the common case fast
- Small constants are common
- Immediate operand avoids a load instruction


## The Constant Zero

MIPS register 0 (\$zero) is the constant 0

- Cannot be overwritten

Useful for common operations

- E.g., move between registers add \$t2, \$s1, \$zero


## Unsigned Binary Integers

## Given an $n$-bit number

$$
x=x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}
$$

Range: 0 to $+2^{n}-1$

## Example

- $00000000000000000000000000001011_{2}$
$=0+\ldots+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=0+\ldots+8+0+2+1=11_{10}$
Using 32 bits
- 0 to +4,294,967,295


## 2s-Complement Signed Integers

Given an n-bit number
$x=-x_{n-1} 2^{n-1}+x_{n-2} 2^{n-2}+\cdots+x_{1} 2^{1}+x_{0} 2^{0}$
Range: $-2^{\mathrm{n}-1}$ to $+2^{\mathrm{n}-1}-1$

## Example

- $11111111111111111111111111111100_{2}$ $=-1 \times 2^{31}+1 \times 2^{30}+\ldots+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$
$=-2,147,483,648+2,147,483,644=-4_{10}$
Using 32 bits
- $-2,147,483,648$ to $+2,147,483,647$


## 2s-Complement Signed Integers

Bit 31 is sign bit

- 1 for negative numbers
- 0 for non-negative numbers
$-\left(-2^{\mathrm{n}-1}\right)$ can't be represented
Non-negative numbers have the same unsigned and 2 s -complement representation
- Some specific numbers
- 0: 00000000 ... 0000
- -1: 11111111 ... 1111
- Most-negative: 10000000 ... 0000
- Most-positive: 01111111 ... 1111


## Signed Negation

## Complement and add 1

- Complement means $1 \rightarrow 0,0 \rightarrow 1$

$$
\begin{aligned}
& x+\bar{x}=1111 \ldots 111_{2}=-1 \\
& \bar{x}+1=-x
\end{aligned}
$$

Example: negate +2

- $+2=00000000 \ldots 0010_{2}$
$-2=11111111 \ldots 1101_{2}+1$
$=11111111 \ldots 1110_{2}$

| 21 | 2'sc binary | decimal |
| :---: | :---: | :---: |
| S conclenent $-2^{3}=$ | 1000 | -8 |
| $-\left(2^{3}-1\right)=$ | 1001 | -7 |
|  | 1010 | -6 |
|  | 1011 | -5 |
| complement all the bits | 1100 | -4 |
|  | 1101 | -3 |
| 0101 | 1110 | -2 |
|  | 1111 | -1 |
| 0110 (6) | 0000 | 0 |
|  | 0001 | 1 |
|  | 0010 | 2 |
|  | 0011 | 3 |
|  | 0100 | 4 |
|  | 0101 | 5 |
|  | 0110 | 6 |
| $2^{3}-1=$ | 0111 | 7 |

## Sign Extension

## Representing a number using more bits

- Preserve the numeric value


## In MIPS instruction set

- addi : extend immediate value
- I b, I h: extend loaded byte/halfword
- beq, bne: extend the displacement


## Replicate the sign bit to the left

- c.f. unsigned values: extend with 0s

Examples: 8-bit to 16-bit

- +2: 00000010 => 0000000000000010
- -2: 11111110 => 1111111111111110

