
4 November 2016

Chapter 2 — Instructions: Language of the Computer 1

EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

The slides are based on the publisher slides
and contribution from Profs Amir Asif and
Peter Lian
The slides will be modified, annotated,
explained on the board, and sometimes
corrected in the class

Chapter 2 — Instructions: Language of the Computer — 2

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

4 November 2016

Chapter 2 — Instructions: Language of the Computer 2

Example

Chapter 2 — Instructions: Language of the Computer — 3

$3

$12

lbu $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 4

$3

$12

lb $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

4 November 2016

Chapter 2 — Instructions: Language of the Computer 3

Example

Chapter 2 — Instructions: Language of the Computer — 5

$3

$11

$12

sb $12, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1

Chapter 2 — Instructions: Language of the Computer — 6

Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

4 November 2016

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 8

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

4 November 2016

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common

 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 10

The Constant Zero

 MIPS register 0 ($zero) is the constant 0
 Cannot be overwritten

 Useful for common operations
 E.g., move between registers

add $t2, $s1, $zero

4 November 2016

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 12

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

4 November 2016

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 14

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

4 November 2016

Chapter 2 — Instructions: Language of the Computer 8

2’s Complement

Chapter 2 — Instructions: Language of the Computer — 15

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

complement all the bits

0101
and add a 1

0110 (6)

Chapter 2 — Instructions: Language of the Computer — 16

Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

