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Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

lb rt, offset(rs)     lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs)    lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs)     sh rt, offset(rs)

 Store just rightmost byte/halfword



4 November 2016

Chapter 2 — Instructions: Language of the Computer 2

Example
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$3

$12

lbu    $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example
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$3

$12

lb    $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address
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Example
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$3

$11

$12

sb    $12, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1
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Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw  $t0, 32($s3)    # load word
add $s1, $s2, $t0

offset base register
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Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw  $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw  $t0, 48($s3)    # store word
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Registers vs. Memory

 Registers are faster to access than 
memory

 Operating on memory data requires loads 
and stores
 More instructions to be executed

 Compiler must use registers for variables 
as much as possible
 Only spill to memory for less frequently used 

variables
 Register optimization is important!
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Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common 
case fast
 Small constants are common

 Immediate operand avoids a load instruction
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The Constant Zero

 MIPS register 0 ($zero) is the constant 0
 Cannot be overwritten

 Useful for common operations
 E.g., move between registers

add $t2, $s1, $zero
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Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers
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2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647
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2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned 

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111
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Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102
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2’s Complement

Chapter 2 — Instructions: Language of the Computer — 15

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

complement all the bits

0101
and add a 1

0110 (6)
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Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110


