
4 November 2016

Chapter 2 — Instructions: Language of the Computer 1

EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

The slides are based on the publisher slides
and contribution from Profs Amir Asif and
Peter Lian
The slides will be modified, annotated,
explained on the board, and sometimes
corrected in the class

Chapter 2 — Instructions: Language of the Computer — 2

Procedure Calling

 Steps required
1. Place parameters in a place where the

procedure can access them

2. Transfer control to procedure

3. Acquire storage (resources) for procedure

4. Perform procedure’s operations

5. Place result in a place where the caller can
access them.

6. Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

4 November 2016

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 3

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 4

Procedure Call Instructions

 Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register
jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps
 e.g., for case/switch statements

4 November 2016

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 5

Leaf Procedure Example

 C code:
int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

 Will need $t0, and $t1 in the calculation of f

Stack

 The best way to store registers is a stack

 A stack is a first-in-last-out data structure

 Stack pointer points to the last element in
the stack (or the first empty place).

 Traditionally stack grows from higher to
lower addresses

Chapter 2 — Instructions: Language of the Computer — 6

used

empty

$sp used

$t1

$sp
$t0

empty

The stack
The stack after pushing $t1 $t0 and $s0

$s0

4 November 2016

Chapter 2 — Instructions: Language of the Computer 4

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 7

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12#adjust stack to make room for 3 items
sw $t1, 8($sp) # push $t1
sw $t0, 4($sp) # push $t0
sw $s0, 0($sp) # push $s0

Save registers

??

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 8

add $t0, $a0, $a1 #$t0 = g+h
add $t1, $a2, $a3 #$t1 = i+j
sub $s0, $t0, $t1 #$s0 = (g+h)-(i+j)

add $v0, $s0, $zero #put the result in $v0

lw $s0, 0($sp) #restore $s0
add $t0, 4($sp) #restore $t0
sub $t1, 8($sp) #restore $t1
addi $sp, $sp, 12 #restore $sp

jr $ra #jump back to the calling routing

Do calculation

put result in $v0

Clean up (remove data
from the stack)

Return control to caller

4 November 2016

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Leaf Procedure Example

 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 10

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the
stack:
 Its return address

 Any arguments and temporaries needed after
the call

 Restore from the stack after the call

4 November 2016

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Non-Leaf Procedure Example

 C code:
int fact (int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 12

Non-Leaf Procedure Example

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

4 November 2016

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 13

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage
 Fixed, does not change during the function execution
 A stable base register to address for local memory reference

Points to the
1st word in the
procedure
frame

Chapter 2 — Instructions: Language of the Computer — 14

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 $gp initialized to address

allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

4 November 2016

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 15

Character Data

 Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

Chapter 2 — Instructions: Language of the Computer — 16

String Copy Example

 C code (naïve):
 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0

4 November 2016

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 17

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

