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Procedure Calling

 Steps required
1. Place parameters in a place where the 

procedure can access them

2. Transfer control to procedure

3. Acquire storage (resources) for procedure

4. Perform procedure’s operations

5. Place result in a place where the caller can 
access them.

6. Return to place of call
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Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)
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Procedure Call Instructions

 Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register
jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps
 e.g., for case/switch statements
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Leaf Procedure Example

 C code:
int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

 Will need $t0, and $t1 in the calculation of f

Stack

 The best way to store registers is a stack

 A stack is a first-in-last-out data structure

 Stack pointer points to the last element in 
the stack (or the first empty place).

 Traditionally stack grows from higher to 
lower addresses
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Procedure Call
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int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12#adjust stack to make room for 3 items
sw $t1, 8($sp) # push $t1   
sw $t0, 4($sp) # push $t0
sw $s0, 0($sp) # push $s0

Save registers

??

Procedure Call
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add $t0, $a0, $a1 #$t0 = g+h
add $t1, $a2, $a3 #$t1 = i+j
sub $s0, $t0, $t1 #$s0 = (g+h)-(i+j)

add $v0, $s0, $zero #put the result in $v0

lw $s0, 0($sp) #restore $s0
add $t0, 4($sp) #restore $t0
sub $t1, 8($sp) #restore $t1
addi $sp, $sp, 12 #restore $sp

jr $ra #jump back to the calling routing

Do calculation

put result in $v0

Clean up (remove data 
from the stack)

Return control to caller
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Leaf Procedure Example

 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw   $s0, 0($sp)
add  $t0, $a0, $a1
add  $t1, $a2, $a3
sub  $s0, $t0, $t1
add  $v0, $s0, $zero
lw   $s0, 0($sp)
addi $sp, $sp, 4
jr   $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return
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Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the 
stack:
 Its return address

 Any arguments and temporaries needed after 
the call

 Restore from the stack after the call
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Non-Leaf Procedure Example

 C code:
int fact (int n)
{ 
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0
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Non-Leaf Procedure Example

 MIPS code:
fact:

addi $sp, $sp, -8     # adjust stack for 2 items
sw   $ra, 4($sp)      # save return address
sw   $a0, 0($sp)      # save argument
slti $t0, $a0, 1      # test for n < 1
beq  $t0, $zero, L1
addi $v0, $zero, 1    # if so, result is 1
addi $sp, $sp, 8      #   pop 2 items from stack
jr   $ra              #   and return

L1: addi $a0, $a0, -1     # else decrement n  
jal  fact             # recursive call
lw   $a0, 0($sp)      # restore original n
lw   $ra, 4($sp)      #   and return address
addi $sp, $sp, 8      # pop 2 items from stack
mul  $v0, $a0, $v0    # multiply to get result
jr   $ra              # and return
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Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage
 Fixed, does not change during the function execution
 A stable base register to address for local memory reference

Points to the 
1st word in the 
procedure 
frame
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Memory Layout
 Text: program code
 Static data: global 

variables
 e.g., static variables in C, 

constant arrays and strings
 $gp initialized to address 

allowing ±offsets into this 
segment

 Dynamic data: heap
 E.g., malloc in C, new in 

Java

 Stack: automatic storage
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Character Data

 Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings
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String Copy Example

 C code (naïve):
 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0
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String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4      # adjust stack for 1 item
sw   $s0, 0($sp)       # save $s0
add  $s0, $zero, $zero # i = 0

L1: add  $t1, $s0, $a1     # addr of y[i] in $t1
lbu  $t2, 0($t1)       # $t2 = y[i]
add  $t3, $s0, $a0     # addr of x[i] in $t3
sb   $t2, 0($t3)       # x[i] = y[i]
beq  $t2, $zero, L2    # exit loop if y[i] == 0  
addi $s0, $s0, 1       # i = i + 1
j    L1                # next iteration of loop

L2: lw   $s0, 0($sp)       # restore saved $s0
addi $sp, $sp, 4       # pop 1 item from stack
jr   $ra               # and return


