Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Like scientific notation
$=-2.34 \times 10^{56} \longleftarrow$ normalized

- + 0.002×10^{-4}
- +987.02 $\times 10^{9}$

In binary
$- \pm 1 . x x x x x x x_{2} \times 2^{\text {yysy }}$
Types float and double in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits
Exponent single: 23 bits double: 52 bits

Fraction
$x=(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent-Bias })}$
S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved

Smallest value

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: $000 . . .00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
$\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}

Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision

- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75
$-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$

- $S=1$
- Fraction = 1000... 00_{2}
- Exponent $=-1+$ Bias

Single: $-1+127=126=01111110_{2}$
Double: $-1+1023=1022=0111111111_{2}$
Single: 1011111101000... 00
Double: 1011111111101000... 00

Floating-Point Example

What number is represented by the singleprecision float
11000000101000... 00

- S = 1
- Fraction = 01000 $\ldots 00_{2}$
- Exponent $=10000001_{2}=129$
$x=(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)}$
$=(-1) \times 1.25 \times 2^{2}$
$=-5.0$

Denormal Numbers

Exponent $=000 \ldots 0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{s} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision

$$
\text { Denormal with fraction }=000 \ldots 0
$$

$$
x=(-1)^{s} \times(0+0) \times 2^{- \text {Bias }}= \pm 0.0
$$

Two representations of 0.0 !

Single Precision		Double Precision		Represents
E(8)	F(23)	E(11)	$F(52)$	
0	0	0	0	True 0
0	Nonzero	0	Nonzero	Denormalized number
1-254	Anything	1-2046	Anything	Float point number
255	0	2047	0	infinity
255	nonzero	2047	nonzero	NaN

Infinities and NaNs

Exponent $=111 \ldots 1$, Fraction $=000 . . .0$

- \pm Infinity
- Can be used in subsequent calculations, avoiding need for overflow check

Exponent $=111 . . .1$, Fraction $\neq 000 . . .0$

- Not-a-Number (NaN)
- Indicates illegal or undefined result e.g., 0.0 / 0.0
- Can be used in subsequent calculations

Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example
$=1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA

Separate FP registers

- 32 single-precision: \$f0, \$f1, ... \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ... Release 2 of MIPs ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers
- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- | wc $1, \mid d c 1$, swc $1, s d c 1$
e.g., Idc1 \$f $8,32(\$ s p)$

FP Instructions in MIPS

Single-precision arithmetic

- add. s, sub.s, mul. s, div.s e.g.,add.s \$f0, \$f1, \$f 6

Double-precision arithmetic

- add. d, sub. d, mul . d, div.d
e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

- $c . x x, s, c, x x . d(x x$ is $e q,|t| e,, \ldots)$
- Sets or clears FP condition-code bit
e.g.c.lt.s \$f 3, \$f 4

Branch on FP condition code true or false

- bc1t, bc $1 f$
e.g., bc1t TargetLabel

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:
float f 2c (float fahr) \{ return ((5.0/9.0)*(fahr-32.0));
\}

- fahr in \$f12, result in \$f0, literals in global memory space
Compiled MIPS code:
f2c: Iwc1 \$f16, const5(\$gp)
| wc2 \$f18, const9(\$gp)
div.s \$f16, \$f16, \$f18
| wcl \$f18, const $32(\$ g \mathrm{p})$
sub.s \$f18, \$f12, \$f18
mul.s $\$ f 0$, $\$ f 16$, $\$ f 18$
$j r \quad \$ r a$

FP Example: Array Multiplication

$X=X+Y \times Z$

- All 32×32 matrices, 64-bit double-precision elements C code:
void mm (double x[][], double y[][], double z[][]) \{
int i, j, k;
for (i=0;i! $=32 ; i=i+1)$
for ($j=0 ; j!=32 ; j=j+1)$
for $(k=0 ; k!=32 ; k=k+1)$ $x[i][j]=x[i][j]$ $+y[i][k] * z[k][j] ;$
\}
Addresses of x, y, z in \$a0, \$a1, \$a2, and i , j , k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

FP Example: Array Multiplication

