

Chapter Roadmap

How to design an ALU?
MIPS datapath
Pipelining
Hazards
Real stuff

Introduction

CPU performance factors

- Instruction count

Determined by ISA and compiler

- CPI and Cycle time

Determined by CPU hardware
We will examine two MIPS implementations

- A simplified version
- A more realistic pipelined version

Simple subset, shows most aspects

- Memory reference: I w, sw
- Arithmetic/logical: add, sub, and, or, sl t
- Control transfer: beq, j

Possible Representations

Sign Mag.	Two's Comp.	One's Comp.
	$1000=-8$	
$1111=-7$	$1001=-7$	$1000=-7$
$1110=-6$	$1010=-6$	$1001=-6$
$1101=-5$	$1011=-5$	$1010=-5$
$1100=-4$	$1100=-4$	$1011=-4$
$1011=-3$	$1101=-3$	$1100=-3$
$1010=-2$	$1110=-2$	$1101=-2$
$1001=-1$	$1111=-1$	$1110=-1$
$1000=-0$		$1111=-0$
$0000=+0$	$0000=0$	$0000=+0$
$0001=+1$	$0001=+1$	$0001=+1$
$0010=+2$	$0010=+2$	$0010=+2$
$0011=+3$	$0011=+3$	$0011=+3$
$0100=+4$	$0100=+4$	$0100=+4$
$0101=+5$	$0101=+5$	$0101=+5$
$0110=+6$	$0110=+6$	$0110=+6$
$0111=+7$	$0111=+7$	$0111=+7$

Issues:

- balance
- number of zeros
- ease of operations

Which one is best? Why?

MIPS Representations

32 -bit signed numbers (2's complement):

```
00000000 0000 0000 0000 0000 0000 0000 two = 0 0 ten
00000000 0000 0000 0000 0000 0000 0001 two = + 1 (ten
00000000 0000 0000 0000 0000 0000 0010 two }=+\mp@subsup{2}{\mathrm{ ten m maxint}}{\mathrm{ ten m}
...
```

```
0111 1111 1111 1111 1111 1111 1111 1110 
```

0111 1111 1111 1111 1111 1111 1111 1110
0111 1111 1111 1111 1111 1111 1111 1111 two = + 2,147,483,647 ten

```
0111 1111 1111 1111 1111 1111 1111 1111 two = + 2,147,483,647 ten
```



```
1000 0000 0000 0000 0000 0000 0000 0010 two = - 2,147,483,646 ten
```

1000 0000 0000 0000 0000 0000 0000 0010 two = - 2,147,483,646 ten
...

```
...
```

$1111111111111111111111111111{1101_{\text {two }}=-3}^{\text {ten }}$
$1111111111111111111111111111{1110_{\mathrm{two}}}^{1} 1112-2_{\text {ten }}$
$1111111111111111111111111111{1111_{\mathrm{two}}=-1_{\text {ten }}, ~}_{111}$

What if the bit string represented addresses?
need operations that also deal with only positive (unsigned)
integers

Two's Complement Operations

Negating a two's complement number - complement all the bits and then add a 1

- remember: "negate" and "invert" are quite different!
- Starting from LSb, all 0's as is, first 1 as is, then invert

Converting n-bit numbers into numbers with more than n bits:

- MIPS 16-bit immediate gets converted to 32 bits for arithmetic
- sign extend - copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & -> & 0000 & 0010 \\
1010 & -> & 1111 & 1010
\end{array}
$$

- sign extension versus zero extend (lb vs. lbu)

Addition \& Subtraction

Just like in grade school (carry/borrow 1s)

0111		
$+\quad 0110$		
1101	$-\quad 01110$	0110
0001	$-\quad 0101$	
0001		

Two's complement operations are easy

- do subtraction by negating and then adding

0111	\rightarrow
-0110	\rightarrow
0001	

Overflow (result too large for finite computer word)

- e.g., adding two n-bit numbers does not yield an n-bit number

0111
$\begin{array}{r}+\quad 0001 \\ \hline\end{array}$
1000

Building a 1-bit Binary Adder

A	B	carry_in	carry_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

> S = A xor B xor carry_in
> carry_out =A\&B | A\&carry_in | B\&carry_in
(majority function)
\square How can we use it to build a 32-bit adder?
How can we modify it easily to build an adder/subtractor?

Building 32-bit Adder

\square Just connect the carry-out of the least significant bit FA to the carry-in of the next least significant bit and connect . . .

\square Ripple Carry Adder (RCA)

- advantage: simple logic, so small (low cost)
- disadvantage: slow and lots of glitching (so lots of energy consumption)

A 32-bit Ripple Carry Adder/Subtractor

Overflow Detection and Effects

Overflow: the result is too large to represent in the number of bits allocated
When adding operands with different signs, overflow cannot occur! Overflow occurs when

- adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive gives a negative
- or, subtract a positive from a negative gives a positive
- On overflow, an exception (interrupt) occurs
- Control jumps to predefined address for exception
- Interrupted address (address of instruction causing the overflow) is saved for possible resumption
Don't always want to detect (interrupt on) overflow

A Simple ALU Cell with Logic Op Support

Modifying the ALU Cell for slt

Overflow Detection

Overflow occurs when the result is too large to represent in the number of bits allocated

- adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive gives a negative
- or, subtract a positive from a negative gives a positive
- On your own: Prove you can detect overflow by:
- Carry into MSB xor Carry out of MSB

0	1	1	1	7
+	0	0	1	1

1	1	0	0	-4
+	1	0	1	1

