
Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 1

Chapter 4
The Processor

With Contribution from Prof. M. J. Irwin of PSU

Chapter Roadmap

 How to design an ALU?

 MIPS datapath

 Pipelining

 Hazards

 Real stuff

Chapter 4 — The Processor — 2

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 2

Chapter 4 — The Processor — 3

Introduction
 CPU performance factors

 Instruction count
 Determined by ISA and compiler

 CPI and Cycle time
 Determined by CPU hardware

 We will examine two MIPS implementations
 A simplified version
 A more realistic pipelined version

 Simple subset, shows most aspects
 Memory reference: lw, sw

 Arithmetic/logical: add, sub, and, or, slt

 Control transfer: beq, j

§4.1 Introduction

Design of a Simple ALU
 2 inputs, operation and an output

Chapter 4 — The Processor — 4

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 3

Possible Representations
Sign Mag. Two’s Comp. One’s Comp.

1000 = -8

1111 = -7 1001= -7 1000 = -7

1110 = -6 1010 = -6 1001 = -6

1101 = -5 1011 = -5 1010 = -5

1100 = -4 1100 = -4 1011 = -4

1011 = -3 1101 = -3 1100 = -3

1010 = -2 1110 = -2 1101 = -2

1001 = -1 1111 = -1 1110 = -1

1000 = -0 1111 = -0

0000 = +0 0000 = 0 0000 = +0

0001 = +1 0001 = +1 0001 = +1

0010 = +2 0010 = +2 0010 = +2

0011 = +3 0011 = +3 0011 = +3

0100 = +4 0100 = +4 0100 = +4

0101 = +5 0101 = +5 0101 = +5

0110 = +6 0110 = +6 0110 = +6

0111 = +7 0111 = +7 0111 = +7

 Issues:

 balance

 number of zeros

 ease of operations

 Which one is best?
Why?

 32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

 What if the bit string represented addresses?
 need operations that also deal with only positive (unsigned)

integers

maxint

minint

MIPS Representations

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 4

 Negating a two's complement number – complement
all the bits and then add a 1
 remember: “negate” and “invert” are quite different!
 Starting from LSb, all 0’s as is, first 1 as is, then invert

 Converting n-bit numbers into numbers with more than
n bits:
 MIPS 16-bit immediate gets converted to 32 bits for arithmetic
 sign extend - copy the most significant bit (the sign bit) into the

other bits
0010 -> 0000 0010
1010 -> 1111 1010

 sign extension versus zero extend (lb vs. lbu)

Two's Complement Operations

 Just like in grade school (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

 Two's complement operations are easy

 do subtraction by negating and then adding

0111 0111
- 0110 + 1010

 Overflow (result too large for finite computer word)

 e.g., adding two n-bit numbers does not yield an n-bit number
0111

+ 0001

Addition & Subtraction

1101 0001 0001

0001 1 0001

1000

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 5

Building a 1-bit Binary Adder

1 bit
Full

Adder

A

B
S

carry_in

carry_out

S = A xor B xor carry_in
carry_out = A&B | A&carry_in | B&carry_in

(majority function)

 How can we use it to build a 32-bit adder?

 How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Building 32-bit Adder

1-bit
FA

A0

B0

S0

c0=carry_in

c1

1-bit
FA

A1

B1

S1

c2

1-bit
FA

A2

B2

S2

c3

c32=carry_out

1-bit
FA

A31

B31

S31

c31

.
.

.

 Just connect the carry-out of
the least significant bit FA to the

carry-in of the next least
significant bit and connect . . .

 Ripple Carry Adder (RCA)

 advantage: simple logic, so small
(low cost)

 disadvantage: slow and lots of
glitching (so lots of energy

consumption)

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 6

A 32-bit Ripple Carry Adder/Subtractor

 Remember 2’s
complement is just

 complement all the bits

 add a 1 in the least
significant bit

A 0111 0111
B - 0110 +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

.
.

.

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0,

!B0 if control = 1

A 32-bit Ripple Carry Adder/Subtractor

 Remember 2’s
complement is just

 complement all the bits

 add a 1 in the least
significant bit

A 0111 0111
B - 0110 +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

.
.

.

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001
1001

1
1 0001

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 7

Overflow Detection and Effects
 Overflow: the result is too large to represent in the

number of bits allocated

 When adding operands with different signs, overflow
cannot occur! Overflow occurs when
 adding two positives yields a negative

 or, adding two negatives gives a positive

 or, subtract a negative from a positive gives a negative

 or, subtract a positive from a negative gives a positive

 On overflow, an exception (interrupt) occurs
 Control jumps to predefined address for exception

 Interrupted address (address of instruction causing the overflow)
is saved for possible resumption

 Don't always want to detect (interrupt on) overflow

A Simple ALU Cell with Logic Op Support

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 8

An Alternative ALU Cell

1-bit
FA

carry_in

s1

s2

s0

result

carry_out

A

B

The Alternative ALU Cell’s Control Codes

s2 s1 s0 c_in result function

0 0 0 0 A transfer A

0 0 0 1 A + 1 increment A

0 0 1 0 A + B add

0 0 1 1 A + B + 1 add with carry

0 1 0 0 A – B – 1 subt with borrow

0 1 0 1 A – B subtract

0 1 1 0 A – 1 decrement A

0 1 1 1 A transfer A

1 0 0 x A or B or

1 0 1 x A xor B xor

1 1 0 x A and B and

1 1 1 x !A complement A

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 9

Modifying the ALU Cell for slt

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

Overflow Detection

 Overflow occurs when the result is too large to
represent in the number of bits allocated
 adding two positives yields a negative

 or, adding two negatives gives a positive

 or, subtract a negative from a positive gives a
negative

 or, subtract a positive from a negative gives a positive

 On your own: Prove you can detect overflow by:
 Carry into MSB xor Carry out of MSB

0 1 1 1

0 0 1 1+

7

3

1 1 0 0

1 0 1 1+

–4

– 5

Morgan Kaufmann Publishers 7 November, 2016

Chapter 4 — The Processor 10

Modifying the ALU for Overflow

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. . .

0

0

set

 Modify the most
significant cell to
determine overflow
output setting

 Enable overflow bit
setting for signed
arithmetic (add, addi,
sub)

zero

. . .

add/subt
op

overflow

