
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to minimize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6

MIPS 5-Stage Pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

7

Hazards

 Structural hazards

 Data hazards

 Control hazards

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Multiple Function Units

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Data Dependence

 Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

Copyright © 2012, Elsevier Inc. All rights reserved.

10Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

Introduction

11Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

12

Control Dependence

 Must preserve exception
behavior.

 We should not change
the exception behavior of
the program.

 We often relax this to
“reordering of instruction
must not raise new
exceptions”

 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1: ……

 No data dependence
prevents us from
exchanging BEQZ
and LW, but might
result in memory
protection exception

Copyright © 2012, Elsevier Inc. All rights reserved.

13Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU
 Preserving the order alone

is not sufficient (must have
the correct value in R1)

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduction• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

