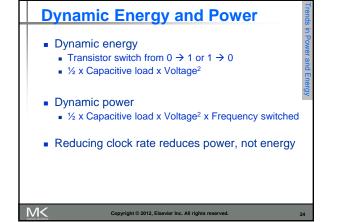
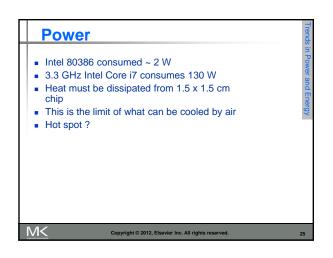
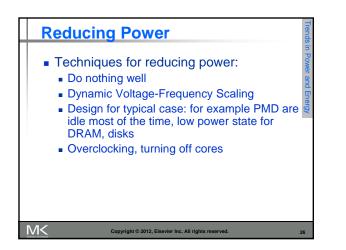

M<	Computer Architecture A Quantitative Approach, Fifth Edition	
	Chapter 1	
	Fundamentals of Quantitative Design and Analysis Part II	
	These slides are based on the slides provided by the publisher. The slides will be modified, annotated, explained on the board, and sometimes corrected in the class	
M<	Copyright © 2012, Elsevier Inc. All rights reserved.	1

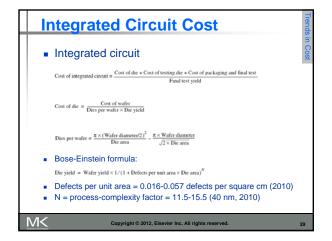


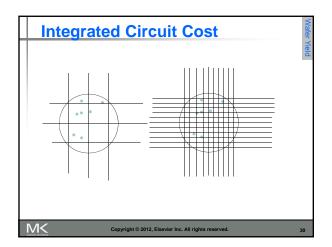


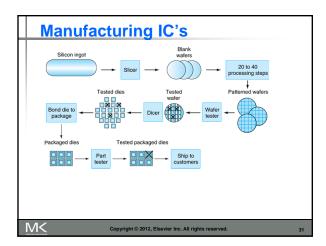

- power consumption
- Energy per task is often a better measurement

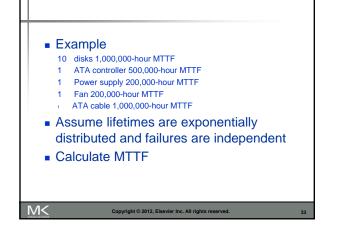
M<

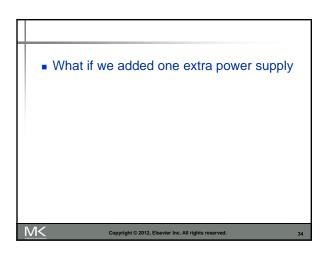
Copyright © 2012, Elsevier Inc. All rights reserved.

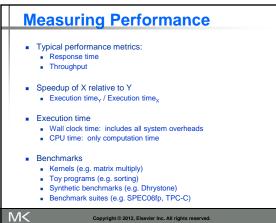


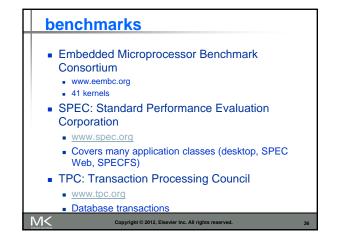


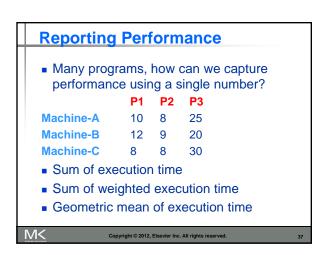

Static Power Static power consumption Current_{static} x Voltage Leakage current (power could be as high as 25-50% of total power consumption) increases with decreasing the transistor size (λ) Scales with number of transistors To reduce: power gating

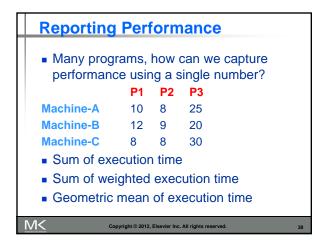







Dependability


- Service Level Agreement (SLA) guarantees a certain level of dependability.
- Module reliability
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)
 - Mean time between failures (MTBF) = MTTF + MTTR
 - Availability = MTTF / (MTTF+MTTR)
- Cost of failure: varies hugely depending on applications



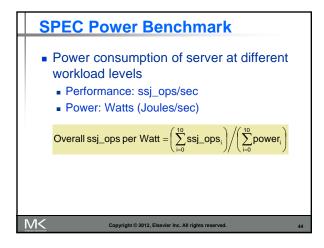
Reporting	Perf	orm	ance	
 Many prog performan 				
	P1	P2	P 3	
Machine-A	10	8	25	
Machine-B	12	9	20	
Machine-C	8	8	30	
Sum of ex	ecutior	n time		
Sum of we	ighted	exec	ution tim	е
 Geometric 	•			
M< •	opyright © 2012,	Elsevier Inc	All rights reserved.	

Repo	rting Perfor	mance	
P1	machine_A 1sec	M/C_B 10sec	M/C_C 20sec
P2	1000sec	100sec	20sec
M<	Copyright © 2012, Elsevier	Inc. All rights reserved.	40

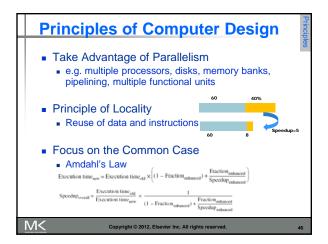
Reporting Performance

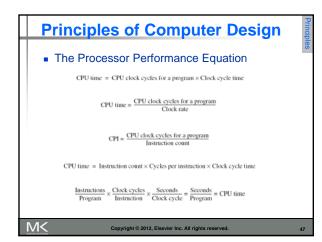
- Time = TC × CPI × IC
- Must be reproducible
- Complete description of the computer and compiler flags.
- Usually, compared to a standard machine execution time SPECRatioA = T_{ref}/T_A.
- Geometric mean

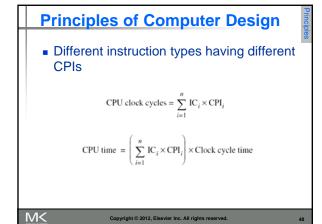
M<


Copyright © 2012, Elsevier Inc. All rights reserved.

	CINT2006 for Opteron X4 2356						
Name	Description	IC×109	CPI	Tc (ns)	Exec time	Ref time	SPECra
perl	Interpreted string processing	2,118	0.75	0.40	637	9,777	15
bzip2	Block-sorting compression	2,389	0.85	0.40	817	9,650	11
gcc	GNU C Compiler	1,050	1.72	0.47	24	8,050	11
mcf	Combinatorial optimization	336	10.00	0.40	1,345	9,120	6
go	Go game (Al)	1,658	1.09	0.40	721	10,490	14
hmmer	Search gene sequence	2,783	0.80	0.40	890	9,330	10
sjeng	Chess game (Al)	2,176	0.96	0.48	37	12,100	14
libquantum	Quantum computer simulation	1,623	1.61	0.40	1,047	20,720	19
h264avc	Video compression	3,102	0.80	0.40	993	22,130	22
omnetpp	Discrete event simulation	587	2.94	0.40	690	6,250	9
astar	Games/path finding	1,082	1.79	0.40	773	7,020	9
xalancbmk	XML parsing	1,058	1 2.70	0.40	1,143	6,900	6
Geometric m	ean		/				11.7
	High cache miss rate	es					


Name	Description	IC×109	CPI	Tc (ns)	Exec time	Ref time	SPECrat
perl	Interpreted string processing	2,252	0.60	0.376	508	9,770	19
bzip2	Block-sorting compression	2,390	0.70	0.376	629	9,650	15
gcc	GNU C Compiler	794	1.20	0.376	358	8,050	22
mcf	Combinatorial optimization	221	2.66	0.376	221	9,120	41.
go	Go game (Al)	1,274	1.10	0.376	527	10,490	19
Hmmer	Search gene sequence	2,616	0.60	0.376	590	9,330	15.
sjeng	Chess game (AI)	1,948	0.80	0.376	586	12,100	20.
libquantum	Quantum computer simulation	659	0.44	0.376	109	20,720	190.
h264avc	Video compression	3,793	0.50	0.376	713	22,130	31.
omnetpp	Discrete event simulation	367	2.10	0.376	290	6,250	21
astar	Games/path finding	1,250	1.00	0.376	470	7,020	14.
xalancbmk	XML parsing	1,045	0.70	0.376	275	6,900	25.
Geometric m	ean						25.7




Target Load %	Performance (ssj ops/sec)	Average Power (Watts
100%	231.867	295
90%	211,282	286
80%	185,803	275
70%	163,427	265
60%	140,160	256
50%	118,324	246
40%	920,35	233
30%	70,500	222
20%	47,126	206
10%	23,066	180
0%	0	141
Overall sum	1,283,590	2,605
Σssj_ops/ Σpower		493

Pitfalls

law

Copyright © 2012, Elsevier Inc. All rights reserved.

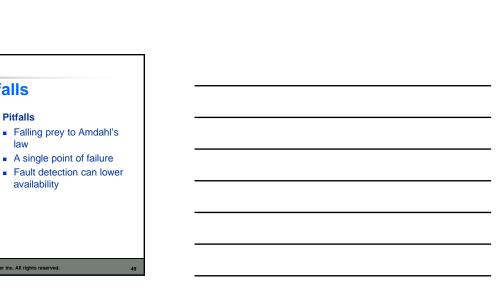
availability

Fallacies and Pitfalls

Fallacies

M<

Multiprocessors are a


H/W enhancements

consumption or at least

improve energy

energy neutral Misreading MTTF Peak performance tracks observed performance

silver bullet

