	Computer Architecture A Quantitative Approach, Fifth Edition
	Chapter 1
ARCHITECTURE	Fundamentals of Quantitative Design and Analysis
	These slides are based on the slides provided by the publisher. The slides will be modified, annotated, explained on the board, and sometimes corrected in the class
M<	Copyright © 2012, Elsevier Inc. All rights reserved.

1

EECS4201 Topics

- Introduction
- Instruction level parallelism
- Data level parallelism (SIMD and GPU)
- Thread level parallelism
- Memory hierarchy design
- Introduction to warehouse-scale computers
- SOC and MPSOC if time permits

Copyright © 2012, Elsevier Inc. All rights reserved.

After successful completion of the course, students are expected to be able to:
 Design cache, memory hierarchy, and virtual memory using different techniques to improve cost/performance ratio.
 Demonstrate how dynamic scheduling and speculative execution can improve the system performance and explain how it is implemented in modern processors.
 Evaluate different design alternatives and make quantitative/qualitative argument for one design over the other.
 Identity the different types of parallelism (data, instruction, thread, transaction) for a given application.
 Compare and evaluate different techniques (such as

multithreading, multicore, or vector) to improve CPU performance

M<

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

Grading EECS4201	
 Grades are distributed as follo HW/Assignments Quizzes Midterm Paper review – groups of 2 Final 	0WS 10% 15% 25% 10% 40%
Copyright © 2012, Elsevier Inc. All rights reserved	i. 6

Grading EECS5501	
 Grades are distributed as for HW/Assignments Quizzes Midterm Project Final 	0llows 10% 15% 20% 20% 35%
Copyright © 2012, Elsevier Inc. All rights res	served. 7

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

Current Trends in Architecture

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended around 2003
- New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- These require explicit restructuring of the application

Copyright © 2012, Elsevier Inc. All rights reserved.

M<

M<

5

Flynn's Taxonomy Image: Comparison of Co

Copyright © 2012, Elsevier Inc. All rights reserved.

M<

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 10,000-25,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event

Copyright © 2012, Elsevier Inc. All rights reserved.

- 30-80X improvement for processors
- 6-8X improvement for memory and disks

M<

