
EECS2031
Lab 4

Winter 2017

This lab will continue to cover the basic design, implementation and testing skills
required to write a C program. Specifically, reading from text files and calculating
a hash function.

Hashing

Hashing is a mapping usually from a string to an integer, and is usually used to
speedup searching. For example consider a class list with 500 student names and
grades. Searching for a student mark may means that we have to go through the
entire class list. A hashing function maps the students names (string) into some
integer. First we start explaining the ideal hashing function.

Consider the case of a class list with 500 names. An ideal hashing function will
map each student name to a unique number between 1 and 500. If we are
searching for a student “John Doe”. Instead of searching the list (we assume
unsorted) name by name till we find “John Doe” or conclude it is not in the list.

If we have an ideal hashing function, then we construct a hashing table and use
the function to map each string to a number i such that 1≤i≤500 . Then we store
the student name and its mark in two arrays name[i] and mark[i]. If we are
looking for “John Doe” grade; instead of searching the entire function for the
name “John Doe”, we apply the hashing function to “John Doe” and get i. Then we
go directly to name[i], if it is empty, the student is not in the class, otherwise the
student is in the class and his/her mark is in mark[i].

Ideal hashing functions are difficult to come by. For example in the previous case,
2 different student names may be mapped to the same integer. For example
“John Doe” and “Jane Doe” may be both mapped to the integer 234. That is
called a collision. In that case, the table name[234] has a pointer to a linked list
with all the names that are mapped to 234. Still searching is much faster. Instead
of going through the 500 names, we hash the name and search all the entries
that are mapped to that integer (usually much less than 500).

Another way to use hashing is to map the 500 names to an integer between 1
and 100. For sure there will be collisions, but a good hashing function will spread
out the names nicely among the 100 entry table so each entry will have 5
names. Searching 5 names is much faster than 500 names.

One more thing to consider is how many entries in the table are used. For
example consider the 500 names and a hashing function that returns an integer
between 1 and 100. Sometimes after we complete the file hashing, we find that

the names are mapped only to 97 distinct integers (24, 37 and 55 didn't receive
any mapping). Like I said before a good hashing function will spread out the
names across all the integers, since these 3 entries are wasted space.

What is a hashing function? The easiest hashing function it to read the string a
character by character and consider each character as an unsigned 8-bit number
between 0 and 255. Then we add all the characters modulo some integer k
resulting in an integer between 0 and k-1.

In this lab, we assume the previous hashing function. The hashing function adds
the bytes of a string modulo k. The size of the hash table is k.

Deliverable:
Write a program to calculate the hashing table of input data. The program reads
from the standard input the table size k. The program reads the data to be
hashed from a text file named “input.txt”. Then it calculates the hashing table

After the program reads the size k, open and reads the data from “input.txt”.
Then it displays some statistics and continue to read from the standard input till
the end of the file (standard input).

The “input.txt” file consists of records (strings, and may contain spaces) each
record is in a separate line. Note that the space is a part of the record to be
hashed.

The statistics to be displayed is as follows (each line terminated by a new line).

• The number of entries with collision is xxx (xxx is an integer left justified in
5 digits, note there is a space between is and the first digit), where a
collision is a tabel entry that received.

• The number of unused entries is xxx (again xxx is an integer left justified in
5 digits, the unused entries are the entries in the k-length table where no
strings are mapped).

Submit the program as hash.c

The following are exercise problems, do not submit them.

Game of Life

In the original game of life, the universe size is infinite. For this lab, we assume
that the universe size is finite and can be descried by 2-D array. The size is an
input parameters, so is the initial state.

The game of life is a 0-player game, the game behavior is determined by the
initial state, no input is required to play.

Mokhtar
Line

Mokhtar
Line

The universe (2-D array) evolves in generations. The next generation state is
completely depends on the current generation state. Generation 0 is the initial
state and is an input to your program.

Rules:
• The state of any cell in the next generation is determined by the state of

the that cell neighbors in the current generation.

• If a live cell has less that 2 alive neighbors in the current generation, it dies
in the next generation (under population).

• If a live cell has more than 3 live neighbors in the current generation, it dies
in the next generation (over population).

• If a live cell has 2 or 3 live neighbors in the current generation, it continues
to live in the next generation.

• If a dead cell in the current generation has exactly 3 live cells, it becomes
live in the next generation (reproduction).

Some patterns repeat itself after a specific period, some patterns may move to
the left/right in a continuous way, some patterns dies off very quickly and every
cell is dead in a small number of generations. After you complete you code, you
may play around with the initial pattern to produce different scenarios.

Specifications

The input to the program is as follows

two integers, r and c to indicate the size of the array (rows and columns)

one integer that determine the number of generations to calculate and display.

r lines each contains c integers with values of either 1 or zero to describe the
initial state of the game.

The output is a series of 2-D arrays displays where the game is displayed as 2-D
array with every cell is either 1 or 0, where 1 means the cell is alive and 0 means
the cell is dead.

A separator of 5 dashes (minus sign) followed by a new line after each display.

For example, if the input is

5 5

3

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

The output should be

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

Birthday Paradox

The birthday paradox is a problem usually taught in probability classes to show
that sometimes what could be intuitive may not be always true.

Consider a room with n people, what is the probability that at least tywo of them
share the same birthday date (day and month, not year).

Since the year is 365 days, so when there are 20-30 people in a room, the
probability that at least two of them having the same birthday is very small, we
will see it is not really that small.

The probability that each person has a distinct birthday (no two people share the
same birthday) with n people in the room is calculated as follows (see a
probability book)

p=
365!

(365−n)! 365n

The probability that at least 2 people share the same birthday is 1-p.

Write a program to calculate

Your program reads n from the standard input and calculate the required
probability using two different techniques and compare between the two values.

• The first is to calculate the above equation. Note that straight forward
calculations may not be feasible (the numbers may be more than what a
float can handle). Think of a creative way to do it.

• The second is by simulation. Generate n random numbers between 1 and
365. Check if there are at least two numbers with the same values. If yes,
then there are at least 2 people with the same birthday, otherwise no two
people with the same birthday. Repeat this one thousand (or 2,000) times
and calculate the required probability.

	Deliverable:
	Rules:

