
1

EECS2031

Lecture 2

Data types

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

Modifiers

• signed (unsigned) int long int

• long long int

• int may be omitted

• sizeof()

Data Types

• int i=3; // integer

• long l=3; // long integer

• integer unsigned long ul= 3UL; //unsigned
long

• int i=0xA; //hexadecimal

• int i=012; //octal number

• float pi=3.14159 //float

• floating point float pi=3.141F //float

• double pi=3.1415926535897932384L

2

Characters

• One byte

• Included between 2 single quotes

• char x =‘A’

• Character string “This is a string”

• ‘A’ != “A”

• X=‘\012’ newline or 10 decimal

A A \0

Arrays

• int a[14];

• char s[10];

Characters

3

Boolean Expressions

• Relational operators

• ==, !=, <, <=, >, >=

• Logical operators

• &&, ||, !

I/O

• Every program has a standard input and
output (stdin, stdout and stderr)

• Usually, keyboard and monitor

• Can use > and < for redirection

• printf(“This is a test %d \n”,x)

• scanf(“%x%d”,&x,&y)
%d %s %c %f %lf

integer string character float double precision

I/O

• int getchar
– Returns the next character on standard input

or EOF if there are no characters left.

• int putchar(int c);
– Writes the character c on the standard output

• int printf(char *format,…)

• printf(“The result is %f \n”,x);

4

C Basics

• Expressions
• abc= x+y*z
• J=a%i
• ++x vs. x++
• X += 5;

// x = x + 5;
• Y /= z;

// Y = Y / z
What is x *= y+1 ?

C Basics

• Decimal numbers 123487

• Octal: starts with 0 0654

• Hexadecimal starts with 0x or 0X ox4Ab2

• 7L for long int =7

• 8U for unsigned

• For floats 24, 23.45, 123.45e-8, 3.4F,
2.15L

Mixed type arithmetic

int

int
int

double

double
double

int

double
double

int x=5, y=2, w;
double z, q = 2;

z = x/y;
// z = 2.0

w = x/y;
// w = 2

z = x/q;
// z = 2.5

w = x/q;
// w = 2

5

Mixed type arithmetic

• 17 / 5
– 3

• 17.0 / 5
– 3.4

• 9 / 2 / 3.0 / 4
– 9 / 2 = 4
– 4 / 3.0 = 1.333
– 1.333 / 4 = 0.333

Mixed type arithmetic

• How do you cast variables?
e.g.

int varA = 9, varB = 2;

double varC;

varC = varA / varB; // varC is 4.0

varC = varA / (double) varB // varC is 4.5

Doesn’t change the value of varB,
just changes the type to double

Pre- and Post- Operators

• ++ or --

• Place in front, incrementing or decrementing occurs BEFORE value
assigned

• Place in back, occurs AFTER value assigned

k = i++;

k = ++i;

i = 2 and k = 1

k =--i;

k = i--;

i = i + 1;
k = i;

3
3

i = i - 1;
k = i;

1
1

k = i;
i = i + 1;

2
3

k = i;
i = i - 1;

2
1

i = 2 and k = 1

6

Precedence

• () Parentheses L to R 1
• ++, - - Postincrement L to R 2
• ++, - - Preincrement R to L 3
• +, - Positive, negative L to R 3
• *, /, % Multiplication, division L to R 4
• +, - Addition, subtraction L to R 5
• <=, >=, >, < Relational operator L to R 6
• ==, != Relational operator L to R 7
• && Logical AND L to R 8
• || Logical OR L to R 9
• +=, -+, *=, /=, %= Compound assignment R to L 10
• = Assignment R to L 10

Examples

• int a=2, b=3; c=5, d=7, e=11, f=3;

• f +=a/b/c;

• d -=7+c*--d/e;

• d= 2*a%b+c+1;

• a +=b +=c +=1+2;

3

-3

7

13

d=6; 5*6/11 =2; 2+7=9; d=d-9=-3

Bitwise Operators

• Works on the individual bits

• &, |, ^, ~

• short int i=5, j=8;

• k=i&j;

• k=i|j;

• k=~j;

7

Bit Shifting

• x<<y means shift x to the left y times

• x>>y means shift x to the right y bits

• Shifting 3 many times
0 3

1 6

2 12

3 24

4 48

13 49512

14 32768

Bit Shifting

• What about left shifting

• If unsigned, 0 if signed undefined in C

• It could be logical (0) or arithmetic (sign)

• Unsigned int I =714

• 357 178 89 44 22 11 5 2 1 0

• What if -714

• -357 -179 -90 -45 -23 ... -3 -2 -1 -1 -1
-1

Examples

• 01011001010 2’s complement

• 10100110110 -714 shift right

• 11010011011 = -357

• 11101001101 = -179

8

Boolean expressions

• False is 0, any thing else is 1

Limits

• The file limits.h provides some constants
• char- CHAR_BIT, CHAR_MIN,
CHAR_MAX, SCHAR_MIN, …

• int INT_MIN, INT_MAX, UINT_MAX

• long LONG_MIN, …

• You can find FLOAT_MIN, DOUBLE_MIN,
… in <float.h>

Conditional experssions

• Test? exper-true:expe-false

• z=(a>b)? a:b

9

Streams and Files

• Stream: any source of input or any
destination for output.

• Files, but could be also devices such as
printers or network ports.

• Accessing streams is done via file pointer
that is of type FILE *.

• Standard streams stdin, stdout,
stderr.

Files

• You must open the file before you read or
write to it (what about stdin, …).

• The system checks the file, and returns a
small non-negative integer known as file
descriptor, all reads and writes are
through this file descriptor.

• 0,1,2 are reserved for stdin, stdout, and
stderr.

Files
• FILE *fp1;

• FILE *fopen(char *name, char *mode)
• fp1=fopen(name, mode);

• Do not assume file will open, always
check for a null pointer.

• Name is a character string containing the
name of the file, mode is a character string
to indicate how the file will be used

• Mode could be “r”, “w”, “a”, “r+”,

10

Files

• To read or write characters from a file
• int fgetc(FILE *fp);

• Returns a byte from a file, or EOF if it
encountered the end of file

• int fputc(int c, FILE *fp);

• Writes the character c to the file (where to
write it?)

• Be aware of “\” in the file name it might be
treated as escape char. use “/”, or “\” ”\”

opening a file

FILE *fp

fp = fopen(“name”, “r”);

if(fp == NULL) {printf (…); exit }

• …..

• OR
if((fp=fopen(NAME,”r”) == NULL)
{..}

Character I/O

• putchar(ch) writes one char to stdout

• fputc(ch, fp) writes ch to fp (same for putc)

• putc is usually implemented as a macro or
function, fputc is a function.

• putchasr is defined as

• #define putchar(c) putc((c, stdout)

• If error, return EOF

11

Character I/O

• int fgetc(FILE *);

• int getc(FILE *);

• int getchar(void); /* from stdin */

• int ungetc(int c, FILE *fp);

• Read char is unsigned char converted to
int (must be int for EOF to work properly).

while((ch = getc(fp)) != EOF {

bla bla bla

}

Line I/O

• int fputs(const char * s, FILE *fp);

• int puts(const char * s);

• puts adds a newline char after s, fputs
doesn’t.

• Both return EOF in case of error

Line I/O

char *fgets(char * s, int n, FILE *fp);

char *gets(char * s);

• gets reads character till a new line (discards)

• fgets reads characters till a newline or n-1
characters. if newline is read, it is added to
the string.

12

Block I/O

size_t fread(void * ptr, size_t
size, size_t nmemb, FILE *fp);

size_t fwrite(void * ptr, size_t
size, size_t nmemb, FILE *fp);

• return the actual number of elements
read/written.

Position in Files

• int fseek(FILE *stream, long offset, int whence);
• The fseek() function shall set the file-position indicator

for the stream pointed to by stream. If a read or write
error occurs, the error indicator for the stream shall be
set and fseek() fails.

• The new position, measured in bytes from the beginning
of the file, shall be obtained by adding offset to the
position specified by whence. The specified point is the
beginning of the file for SEEK_SET, the current value of
the file-position indicator for SEEK_CUR, or end-of-file
for SEEK_END.

Position in File

• some problems when dealing with text
files.

• See example in the lecture.

13

Formatted I/O

• we can use fprintf and fscanf with the first
parameter a file pointer.

• Error?

Formatted I/O

• for scanf and fscanf, error may be
• End-of-file feof(fp) returns a non-zero

value
• Read error ferror(fp) returns a non-

zero value

• A matching error, neither of the above two
indicators returns a non-zero.

