Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

EECS2031

Introduction

Introduction

« Instructor: Mokhtar Aboelaze
* Room 2026 CSEB
lasthname@cse.yorku.ca x40607

« Office hours W 2:00-4:00 or by
appointment

Grading Details

« Participation 5%
e Lab 15%
« 3tests 18% each (total 54%)
 Final 26%

About the course

» By the end of the course, the students will
be expected to be able to:

— Use the basic functionality of the Unix shell, such as
standard commands and utilities, input/output
redirection, and pipes

— Develop and test shell scripts of significant size.

— Develop and test programs written in the C
programming language.

— Describe the memory management model of the C
programming language

Introduction

¢ Course Content
e C
— Learn how to write test, and debug C
programs.
¢ UNIX (LINUX)

— Using Unix tools to automate making and
testing.

— Unix shell programming

Text

The C Programming Language, Kernighan
and Ritchie (K+R)

« C Programming: A Modern Approach 2nd
edition K.N. King (optional)

¢ Practical Programming in the UNIX
Environment, edited by W. Sturzlinger

 Class notes (Slides are not complete,
some will be filled in during class).

* Man pages

Course Objective

» By the end of the course, you should be
able to
— Write applications (though small) in C
— Test and debug your code
— Use UNIX to automate the compilation
process

— Write programs using UNIX shell scripts and
awk

WHY C and UNIX

* Wide use, powerful, and fast
« Both started at AT&T Bell Labs

* UNIX was written in assembly, later
changed to C

« Many variants of UNIX

WHY C and UNIX

The first part of the course is C
The second part shell script (sh)

We will start with a quick introduction to
Unix to be able to start the labs.

Lab 1 is this week (introduction to Unix)
Lab policy

Introduction to Unix

» Please check the tutorial at
http://www.cs.sfu.ca/~ggbaker/reference/unix/

* The first 4 tutorials
« Blackboard

C — A History

 In 1972 Kernighan and Ritchie invented C

* In 1978 Brian Kernighan and Dennis Ritchie
Published their “white” book. Became
defacto standard for C known as K&R C.

* ANSI completed a standard for C approved
in 1989 as ANSI X3.159-1989 known as
C89 or C90 (ANSI-C).

C99 became standard in ISO/IEC
9899:1999.

Languages based on C

« C++ basically object oriented C

« Java C syntax, much more restrictive +
garbage collection

« C#

« Perl started as scripting language,
overtime adopted many features of C

» Almost low level, small, permissive (assumes
you know what are you doing) language.

« Efficient, portable, powerful, and flexible (from
system programming to embedded systems).

» Can be error prone, difficult to understand
(see next slide)

Obfuscated C

int v,i,j.k,1,s,a[99];

main(){
for(scanf(*'%d",&s);*a-s;v=a[j*=v]-a[i].k
=i<s, J+=(v=)<s&&(1k&& ! printf(2+"\n\n%c""
-(NI<<), " #QU[IMNV?2(1MN)& 2])&&++1 |]
a[i]<s&&v&&v-i+j&&v+i-3))&&1(1%=s),Vv]|
(i==j?a[i+=k]=0:++a[i])>=s*k&&++a[--i])

Tips

I LVJ

 Use tools to make programs more reliable
« Use existing code library
« Adopt a sensible set of coding conventions

« Avoid tricks and overly complex code (do
not ever do something like the Q8.c)

Software Development Cycle

Idea/specs Design |—'| Coding Program

Debugging

Why Testing

* Specifications = LAW, you have to obey it.

« No changes (improvement) unless it is approved
 Ifin doubt, ask

« First create test cases, test, if error, debug,

repeat
e Testing can show the presence of faults, not
their absence -- Dijkstra

» Testing is very costly, in large commercial
software 1-3 bugs per 100 line of code.

Why Testing

1990 AT&T long distance calls fail for 9 hours

— Wrong location for C break statement

1996 Ariane rocket explodes on launch

— Overflow converting 64-bit float to 16-bit integer

1999 Mars Climate Orbiter crashes on Mars

— Missing conversion of English units to metric units

Therac: A radiation therapy machine that delivered
massive amount of radiations killing at lease 5
people

— Among many others, the reuse of software written for a machine
with hardware interlock. Therac did not have hardware interlock.

Why Testing

—Jan 13, 2005, LA Times

“A new FBI computer program designed to
help agents share information to ward off
terrorist attacks may have to be scrapped,
forcing a further delay in a four-year, half-
billion-dollar overhaul of its antiquated
computer system... Sources said about $100
million would be essentially lost if the FBI
were to scrap the software...”

Compile and Run

» The code is compiled by using gcc
egcc file.c

e gcc —o0 output file.c

e gcc —Idirectory file.c

« $PATH and a.out

Type of Errors

* Errors in program called bugs
« Testing is the process of looking for errors,
debugging if found
» Three types of errors
— Syntax
— Run-time
— Logic

Syntax Errors

» Mistakes by violating “grammar” rules
« Diagnosed by C++ compiler
» Must fix before compiler will translate code

Syntax Errors

I

. #Hinclude stdio.h> #include <stdio.h>
. Ej't main (E i{nt main()
printhJ—Iello WorIlJ;il); printf(“Hello World”);
e [*Next line will output *next line will output
. a name! Aname */
printf(* Total is %d Printf(“Total is %d
\n”,total); \n”total);
y “”t{(“_':'nm result is printf(“Final result is
esult); \n”,result););
.} }

Runtime Errors

« Violation of rules during execution of
program

« Computer displays message during
execution and execution is terminated

« Error message may help locating error

E.g. X= 5/0;

Logical Errors

Will not be detected by the compiler, may
or may not produce an error message (if it
results in a runtime error)

Difficult to find

Execution is complete but output is
incorrect

Programmer checks for reasonable and
correct output

