
1

CSE2301

Arrays and Pointers

Warning: These notes are not complete, it is
a Skelton that will be modified/add-to in the
class. If you want to us them for studying,
either attend the class or get the completed
notes from someone who did

These slides are based on slides by Prof. Wolfgang
Stuerzlinger at York University

Arrays

• Data structure

• Grouping of data of the same type

• Indicated with brackets containing positive
integer constant or expression following
identifier
– Subscript or index

• Loops commonly used for manipulation

• Programmer sets size of array explicitly

Arrays

• Syntax
– type name[value];

• Example
– Int bigArray[10];

– Double a[3];

– Char grade[10], oneGrade;

2

Arrays

• Declare the array  allocates memory
int score[5];
– Declares array of 5 integers named "score"
– Similar to declaring five variables:

int score[0], score[1], score[2], score[3], score[4]

• Individual parts called many things:
– Indexed or subscripted variables
– "Elements" of the array
– Value in brackets called index or subscript

• Numbered from 0 to size - 1

Arrays

a[0]

a[1]

a[2]

a[n]

1234

1235

1236

1237

1238

…..

…

…

1260

1261 Some other
variables

Initialization

• In declarations enclosed in curly braces

int a[5] = {11,22}; Declares array a and initializes first two
elements and all remaining set to zero

int b[] = {1,2,8,9,5}; Declares array b and initializes
all elements and sets the length
of the array to 5

3

Array Access

• X=ar[2];

• ar[3]=2.7;

• What is the differenc ebetween ar[i]++,
ar[i++], ar[++i];

Strings

• No string type in C

• Char greetings[]=“hello”

H e l l o \n

Array Declaration

#define N_COL 200

const int N_ROW = 100;

float arr[N_ROW][N_COL];

• In C99
scanf("%d", &N)

double data[N];

4

Pointers

• Memory address of a variable

• Declared with data type, * and identifier
type * pointer_var1, * pointer_var2, …

• Example.
double * p
int *p1, *p2;

• There has to be a * before EACH of the pointer
variables

• Use the "address of" operator (&)

• General form:

pointer_variable = &ordinary_variable

Name of the pointer Name of ordinary
variable

Using a Pointer Variable

• Can be used to access a value

• Unary operator * used
* pointer_variable

– In executable statement, indicates value

• Example

int *p1, v1;
v1 = 0;
p1 = &v1;
*p1 = 42;
printf(“%d\n“,v1);
printf(“%d\n,*p1); what about p1?

Output:
42
42

5

Pointer Variables

x = 25;
y = x;
z = &x;

25

1200 1204 1208

9608 8404

25 1204

int x,y;

int * z;
x

Pointer variables

z= 0x12345A BAD idea

Instead, use z=& another-vriable

Pointer Types

25

1200 1204 1208

1204

8404

9608

25

z=*y

z

y

6

Pointers

Pointers

• identifier of an array is equivalent to the address of its
first element

– int numbers [20];
int * p;

p = numbers // Valid
numbers = p // Invalid

• p and numbers are equivalent and they have the same
properties

• Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int

Pointer Arithmetic

• int *x, *y

• int z;

• Can do
– z=x-y;

– x=NULL;

– if(c==NULL)

– Also, what is void * ?

7

Pointer Arithmetic

• int x[10];

• what is x[i] is it the same as *(x+i)

• What is the unit of x++ or x+5 5 what?

• Two functions

• void swap(int x, int y)

• void swap(int *x, int *y)

Pointers

• void * (pointer to a void) is the generic pointer
replacing char *)

• Legal: add/sub a pointer and an integer,
subtracting and comparing 2 pointers to
members of the same array, and assigning or
comparing to zero.

• Illegal add, multiply or divide 2 pointers, or
assign one type to another type except void *
without a cast.

• Any pointer can be cast to void * and back again
without loss of information (used for pointer
argument).

Functions

• Arrays passed to a functions are passed by
reference.

• The name of the array is a pointer to its first
element

• strcpy(char dest[], char src[]);

• Note that does not copy the array in the
function call, just a reference to it.

8

String Functions

• Man the following functions
– strcpy

– strcmp

– strcat

– trlen

– strchr

– strstr

Multi-Dimensional Arrays

Int a[3][3];

Int a[3][3] = {

{1,2,3},

{4,5,6},

{7,8,9}};

Int a[][3] = {

{1,2,3},

{4,5,6},

{7,8,9}};

Int a[][] = {

{1,2,3},

{4,5,6},

{7,8,9}};

Multi-Dimensional Arrays

• Multi-dimensional arrays are array of arrys

• For the previous example, m[0] is a pointer
to the first row.

• Lay out in memory

M[0][0] M[0][1] M[0][2] M[1][0]

9

Multidimensional arrays
• #include <stdio.h>
• int main() {
• float *pf;
• float m[][3]={ {0.1, 0.2, 0.3},
• {0.4, 0.5, 0.6},
• {0.7, 0.8, 0.9} };
• printf("%d \n",sizeof(m));
• pf=m[1];
• printf("%f %f %f \n",*pf, *(pf+1), *(pf+2));
• printf("%f %f %f \n",*pf, *(pf++), *(pf++));
• }

36

0.4000 0.5000 0.6000

0.6000 0.5000 0.4000

Array of Pointers

• Char *words[]={“apple”, “cherry”, “banana”};

• Words is an array of pointers to a char, each
element of words words[0], … is a pointer to a
char.

words

0

1

2

“apple”

“cherry”

“banana”

Pointers to Pointers

• Pointers can point to integers, floats,
chars, and other pointers.

int **j;

int *i;

int k=10;

i=&k;

j=&i;

printf(“%d %d %d\n”,j,i,k);

printf(“%d %d %d\n”,j,*j,**j);

printf(“%x %x %x\n”,j,*j,**j);

-1073744352 -1073744356 10

-1073744352 -1073744356 10

bffff620 bffff61c a

On my system

10

Arrays vs. Pointers

• What is the difference between the last
example and

• char words[][10] = { “apple”,

• “cherry”,

• “banana”};

strcpy

void strcpy(char *s, char *t) {

int i;

i=0;

while((s[i] = t[i]) != ‘\0’)

i++;

}

strcpy

void strcpy(char *s, char *t) {

while((*s = *t) != ‘\0’) {

s++;

t++

}

}

11

strcpy

void strcpy(char *s, char *t) {

while((*s++ = *t++) != ‘\0’) ;

}

char *words[] = { “apple”,
“cherry”,
“banana”};

Char **p;
p=words;
printf("%c\n", **p);
printf("%c\n",*(*(p+1)+2));
printf("%c\n",*(*(p+2)+2)+1);

EX

a
e
o

a
e
o

+1

