EECS 2031
Software Tools

Prof. Mokhtar Aboelaze

® Footer Text 9/6/2018 @ 1

EECS 2031E

e |nstructor: Mokhtar Aboelaze
e Room 2026 CSEB lastname@cse.yorku.ca x40607
» Office hours TTH 12:00-3:00 or by appointment

9/6/2018

Grading Details

Lab 10%
3 tests 20% each (total 60%)
Final 30%

About the course

By the end of the course, the students will be
expected to be able to:

0 Use the basic functionality of the Unix shell, such
as standard commands and utilities, input/output
redirection, and pipes

o0 Develop and test shell scripts of significant size.

o Develop and test programs written in the C
programming language.

o Describe the memory management model of
the C programming language

9/6/2018

9/6/2018

Text

The C Programming Language, Kernighan and
Ritchie (K+R)

C Programming: A Modern Approach 2"d edition
K.N. King (optional)

Practical Programming in the UNIX Environment,
edited by W. Sturzlinger

Class notes (Slides are not complete, some will be
filled in during class).

Man pages

Introduction

* Course Content
« C
0 Learn how to write test, and debug C programs.

« UNIX (LINUX)

o0 Using Unix tools to automate making and testing.
o0 Unix shell programming

Course Objective

» By the end of the course, you should be able to

o Write applications (though small) in C

o Test and debug your code

0 Use UNIX to automate the compilation process
o Write programs using UNIX shell scripts and awk

WHY C and UNIX

Wide use, powerful, and fast

Both started at AT&T Bell Labs

UNIX was written in assembly, later changed to C
Many variants of UNIX

9/6/2018

WHY C and UNIX

The first part of the course is Linux and bash
The second partis C

We will start with a quick introduction to Unix to be
able to start the labs.

Lab 1 is this week (introduction to Unix)
Lab policy

Introduction to Unix

Please check the tutorial at
http://www.cs.sfu.ca/~ggbaker/reference/unix/

The first 4 tutorials
Blackboard

9/6/2018

9/6/2018

UNIX

« What does an OS do?
— File management
— Scheduling
— Memory management
—1/0 management

 Examples

® Footer Text 9/6/2018 ®11

UNIX

Kernel: Performs key OS functions
System programs: various tools
Shell: Interface to the user

® Footer Text 9/6/2018 @12

Processes

» Each program running is called a process
» Each process has its own identification PID

» If the program is running twice, even by the same
user, these are 2 different processes.

® Footer Text 9/6/2018 ®13

File System

* In Unix, the files are organized into a tree structure
with a root named by the character ’/’.

* Everything in the file system is a file or subdirectory

® Footer Text 9/6/2018 @14

9/6/2018

File System

aio.h

® Footer Text 9/6/2018 ® 15

File System

» File names could be relative (with respect to the
current directory) or using full path name (relative to
/) for example aio.h or /cs/include/aio.h

* Your home directory is ~username, so in my case

~aboelaze/test.c is equivalent to
/cs/home/aboelaze/test.c

® Footer Text 9/6/2018 @16

9/6/2018

Devices

» /dev contains devices, just like any other file (fopen,
fread, fwrite, ..) but it communicate with a device.

» /dev/tty
e /dev/null
e /dev/zero

® Footer Text 9/6/2018 @17

Unix Commands

Is cp mv rm mkdir cd pwd cat less more head tall

bg, fg, CTRL-C, CTRL-Z
kill ps od diff In echo ...
Redirection and pipes Examples

® Footer Text 9/6/2018 @18

9/6/2018

Unix Commands

tigger 215 % Is —las

total 44

4 drwx------ 2 aboelaze faculty 4096 Nov 29 13:44 ./
4 drwx------ 9 aboelaze faculty 4096 Nov 29 14:47 ../

4 -rw------- 1 aboelaze faculty 184 Nov 18 13:30 data

4 -rw------- 1 aboelaze faculty 23 Nov 28 19:52 filel

4 -rw------- 1 aboelaze faculty 24 Nov 28 19:52 file2

4 -rw------- 1 aboelaze faculty 481 Nov 29 12:27 mergefiles.awk
4 -rw------- 1 aboelaze faculty 178 Nov 28 19:32 p1

4 -rw------- 1 aboelaze faculty 1245 Nov 18 13:29 prchecks.awk
4 -rw------- 1 aboelaze faculty 83 Nov 14 17:46 t

4 -rwx------ 1 aboelaze faculty 35 Nov 21 13:08 test.sh*

4 -rw------- 1 aboelaze faculty 50 Nov 1 18:31 unmatched

chmod 744 file What does it mean?
chmod [ugo][+-][rwx] chmod ug+rw pl

® Footer Text 9/6/2018 ®19

Basic Unix Commands

Is, cp, mv, rm, mkdir, cd, pwd
cat, more, less, head, tall

diff, who, date, ps, kill, od, du, cal
chmod, chgrp, pipeline

Redirection
— command >file
— commnad >>file
— command <file >filel

® Footer Text 9/6/2018 © 20

9/6/2018

10

9/6/2018

Protection

tigger 215 % s —las

total 44

4 drwx————-—-- 2 aboelaze faculty 4096 Nov 29 13:44 ./

4 drwx—-—————-- 9 aboelaze faculty 4096 Nov 29 14:47 ../

4 -rw——————- 1 aboelaze faculty 184 Nov 18 13:30 data
[-X--X-W-

How to change file permission its

Chmod

SGID chmod g+s or 2700
SUID chmod u+s or 4750
$PATH man

® Footer Text 9/6/2018 @21

Shells

» Different shells
o0 Bourne Shell (sh)

« The first shell for Unix and is written by Stephen Bourne. Bourne shell
was simple yet powerful shell, however it was lacking some important
features such as history, aliasing and job control.

0 Bourne Again Shell (bash)

« A superset of the Bourne shell. It is the default shell for Linux. It added

many features to the Bourne shell.
0 C Shell (csh and tcsh)

¢ The C shell was introduced at the University of California Berkeley. It

added many of the features to Bourne shell.
0 Extended C(kshtcsh)

« Itis an extension of the C shell, some features were added (command
completion). This is the default shell at most of the Linux boxes here at
Lassonde

° 220

11

BASH

» Interactive vs scritping

» Startup files /etc/profile ~/.bash_profile ~/.profile

* Nonlogin ~/.bash_rc

® Footer Text

9/6/2018 ®23

#!/bin/bash

#File: sh1.sh

echo this is a bash script

5 (|89 | =

date

bash-4.2% bash shl1.sh ——
this is a bash script

Tue Aug 28 16:15:40 EDT
2018 | | .

® Footer Text

9/6/2018 ®24

9/6/2018

12

Variables
1. X=5
2. echoX X
3. echo $X 5
4. X=5 X: Command not found
5. X=5 X=: Command not found
6. X=6
7. echo SX 6
8. x=SX+1
9. echo Sx 6+1

® Footer Text

9/6/2018 @25

Positional Parameters

» Consider the command cp filel file2

® Footer Text

9/6/2018 26

9/6/2018

13

#!/bin/bash

#File: sh2.sh

echo The first parameter is S1

= 52 |2 &

bash-4.2% sh2.sh a 7856 —

echo The second is $2 The first parameter is a

The second is 7856

® Footer Text

9/6/2018 @27

Positional Variables
Command ~ Resultand explanation

$0

$1$2 ... $9 ${10}
$~k

$#

$@

$?
$$

$IFS

® Footer Text

The name of the script

The different positional parameters
list of all positional parameters
The number of parameters

list of all arguments differs from $*
only when in double quotes

The exit status of the process

The pid of the current shell (not
subshell)

The input field separator

9/6/2018 ®28

9/6/2018

14

$* and $@

#!/bin/bash

bash-4.2¢$ sh4.sh12 "34"56

echo using "*"

using ¥
1

foriin $*; do echo "<Si>"; done

E

<2>

echo using "@"

3>
<4>

S (5= |52 2 | &

foriin S@; do echo "<Si>"; done

<5>
I

using @

<I>
<2>

<3>
A

4

<5>

<6>

® Footer Text

9/6/2018 ®29

$* and $@

#1/bin/bash

echo using \””""**“\”’

foriin “S*”; do echo "<Si>"; done

bash-4.2¢4 sh4sh 12 "34"5¢
-+

echo using "@"

using “*”

S 62 58 (2, =

foriin “S@”; do echo "<Si>"; done

<1 23456>
using @

<l>
<2>

<34>

<5>
<6>

® Footer Text

9/6/2018 ®30

9/6/2018

15

Quotes

1. #!/bin/bash

> #Douhl it itution. sinel [
3k

bash-4.2S x=Fred #x is set to Fred

. _bash-4.2S y="How are you $x" #Sx is expanded to Fred,

bash-4.2S echo Sy #How are you Fred

. bash-4.2S y="How are you Sx' #This is single quotes,

4
5
6
7

. _bash-4.2S echo Sy #How are you Sx

® Footer Text 9/6/2018 @31

Sequence of Commands

commandl; command?2

(commandl; command2) what is the difference
commandl && command?2

commandl || command2

9/6/2018

16

9/6/2018

Quotations mark

» double quote some characters

 Single quote -- ,No evaluation

e back quote — execute command

e x="this is true”

» echo $x

e echo “$x” no expansion for meta char, yes for $
» echo ‘$x’ no expansion for either

Shell Pattern Matching--Wild Cards

» The character * matches any string of
characters

e ? Matches a single character

* [0-9]: matches any digit

 [a-z]: matches any small case letter

 [abc]: x[ab]ly matches xay and xby

* \c matches c only

* alb matches a or b in case expression only

17

Shell Variables

e setx=3 --csh

« x=3 --sh (no spaces around the “=*
e echo x

e echo $x what is the difference

e B=5C=3D=2 --Thatis O.K.

 Valid variables begin with a letter, contains
letters, numbersand _ a5 6

PATH path

* The shell searches in PATH looking for the
command you typed

e echo $PATH .:/usr/local/bin;/usr/ucb:
/usr/bin /usr/etc:/etc:/bin:/usr/bin/X11

» set path = ($path /a/b/c) --csh
o PATH=$PATH:/a/b/c --sh
» Aliases and startup files

9/6/2018

18

Shell scripting

#!/cs/local/bin/sh
echo “Hello World”

echo -n “Hello
World”

#!/cs/local/bin/sh

echo "Now | will guess your OS™
echo -n"Your OSis:"

uname

tigger 397 % scriptl
Hello World
tigger 398 %

tigger 393 % scriptl
Hello Worldtigger 394 %

tigger 399 % scriptl
Now | will guess your OS
Your OS is : Linux

tigger 400 %

Shell Scripting

#!/cs/local/bin/sh

read FNAME

echo -n "Last name pelase : "
read LNAME

echo "$SMESSAGE"

echo -n "Please enter your first name : "

tigger 439 % script3

Please enter your first name : Mokhtar
Last name pelase : Aboelaze

Your name is : Aboelaze , Mokhtar

MESSAGE=" Your name is : $LNAME , $SFNAME"

9/6/2018

19

Shell Scripting

#!/cs/local/bin/sh
read FNAME

echo "1-> $FNAME123"
echo "2-> ${FNAME}123"

tigger 454 % script4

abcd

1->

2-> abcd123
tigger 455 %

Shell Scripting

Set the initial value.

myvar=abc

echo "Test 1 ===

echo $myvar
echo ${myvar}
echo {$myvar}

echo "Test 2 ===

echo myvar
echo "myvar"
echo "$myvar”
echo ‘$myvar’
echo "\$myvar"

echo "Test 3 ===
echo $myvardef

abc

same as above, abc

{abc}

Just the text myvar
Just the text myvar

abc

$myvar

Empty line

echo ${myvar}def # abcdef

abcdef

$ sh var_refs

9/6/2018

20

Shell Scripting

echo "Test 4 ======" Test 4 ======
echo $myvar$myvar # abcabc abcabc
echo ${myvar}${myvar} # abcabc abcabc
echo "Test 5 ======" Test 5 ======

Reset variable value, with spaces

myvar="a b c"

echo "$myvar" #a b c a b c
echo $myvar #abc abc

o < Take the input from this file

°« > Send the output to that file

« >> As above, but append to the end

e 2> Redirect error to this file

1>&2 Send output to where error is going
2>&1 Send error to where output is going

9/6/2018

21

o $?
- $$
o $*
o $#
* $0

Special variables

« Special variables starts with $

The exit status of the last command
The process id of the shell

String containing list of all arguments
Number of argument

Command line

e Without quotes *’ they are the same

» With quotes
— $* The parameter list becomes a single string

— $@ each of the parameters is quoted (treated
as a single string) unless 2 of the parameters
are quoted, they are treated as a single string

9/6/2018

22

$* and $@

Setabc“def’gh
foriin $*; do echo $i;
done

SQ "0 Q000D

Setabc“def’gh
foriin $@; do echo $i;
done

SKQ T Q00T

45 e

$* and $@

Setabc“def’gh
foriin “$*”; do echo $i;
done

abcdefgh

Setabc“def’gh
foriin “$@”; do echo $i;
done

46 @

9/6/2018

23

9/6/2018

Shift

#1/bin/sh
/bin/s Shift.sh 123456789

First arg i1s 1
_ _ First arg i1s 2
echo Firstargis $1 First arg is 4

shift 1
echo First arg is $1
shift 2
echo First arg is $1

24

