
The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors
 intel

 Compiler-based static approaches
 Not as successful outside of scientific applications
 Popular in PMD for energy consumption reasons.
 ARM Cortex-A8

Introduction

3Copyright © 2019, Elsevier Inc. All rights Reserved

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to maximize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)
 For (i=0;i<100;i++) x[i]=x[i]+y[i];

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall (hazard)

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6Copyright © 2019, Elsevier Inc. All rights Reserved

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use register renaming techniques

Introduction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 3

7Copyright © 2019, Elsevier Inc. All rights Reserved

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

8Copyright © 2019, Elsevier Inc. All rights Reserved

Examples

 or instruction dependent on
add and sub

 The value in x1 depends on
the branch

 Assume x4 isn’t used after
skip
 Possible to move sub before

the branch

Introduction• Example 1:
add x1,x2,x3
beq x4,x0,L
sub x1,x1,x6

L: …
or x7,x1,x8

• Example 2:
add x1,x2,x3
beq x12,x0,skip
sub x4,x5,x6
add x5,x4,x9

skip:
or x7,x8,x9

9Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniq
ues

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 4

10Copyright © 2019, Elsevier Inc. All rights Reserved

Pipeline Stalls

1. Loop: fld f0,0(x1)
2. stall
3. fadd.d f4,f0,f2
4. stall
5. stall
6. fsd f4,0(x1)
7. addi x1,x1,-8
8. bne x1,x2,Loop

C
om

piler Techniq
ues

1. Loop: fld f0,0(x1)
2. addi x1,x1,-8
3. fadd.d f4,f0,f2
4. stall
5. stall
6. fsd f4,8(x1)
7. bne x1,x2,Loop

11Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

1. Loop: fld f0,0(x1)

2. fadd.d f4,f0,f2

3. fsd f4,0(x1) //drop addi & bne

4. fld f6,-8(x1)

5. fadd.d f8,f6,f2

6. fsd f8,-8(x1) //drop addi & bne

7. fld f0,-16(x1)

8. fadd.d f12,f0,f2

9. fsd f12,-16(x1) //drop addi & bne

10. fld f14,-24(x1)

11. fadd.d f16,f14,f2

12. fsd f16,-24(x1)

13. addi x1,x1,-32

14. bne x1,x2,Loop

C
om

piler Techniq
ues

 note: number
of live registers
vs. original loop

1

2

12Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

1. Loop: fld f0,0(x1)

2. fld f6,-8(x1)

3. fld f8,-16(x1)

4. fld f14,-24(x1)

5. fadd.d f4,f0,f2

6. fadd.d f8,f6,f2

7. fadd.d f12,f0,f2

8. fadd.d f16,f14,f2

9. fsd f4,0(x1)

10. fsd f8,-8(x1)

11. fsd f12,-16(x1)

12. fsd f16,-24(x1)

13. addi x1,x1,-32

14. bne x1,x2,Loop

C
om

piler Techniq
ues

 14 cycles
 3.5 cycles per element

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 5

13Copyright © 2019, Elsevier Inc. All rights Reserved

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

piler Techniq
ues

14Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction

 Basic 2-bit predictor:
 For each branch:

 Predict taken or not taken
 If the prediction is wrong two consecutive times, change prediction

 Correlating predictor:
 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes of preceding n

branches
 (m,n) predictor: behavior from last m branches to choose from 2m n-bit

predictors

 Tournament predictor:
 Combine correlating predictor with local predictor

B
ranch P

rediction

15

Branch Prediction

 Branching completes in 2 cycles – We know the
target address after the second stage

 1 Cycle delay

Copyright © 2019, Elsevier Inc. All rights Reserved

PC

Instruction
Memory

PC+4

fetch
Decode

Check the
condition

Calculate
the branch
target
address

?

B
ranch P

rediction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 6

16

Branch Prediction

Copyright © 2019, Elsevier Inc. All rights Reserved

B
ranch P

rediction

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3 add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

17

Branch Prediction

 Dynamic scheduling deals with data dependence
improving, the limiting factor is the control
dependence.

 Branch prediction is important for processors
that maintains a CPI of 1, but it is crucial for
processors who tries to issue more than one
instruction per cycle (CPI < 1).

 We have already studied some techniques
(delayed branch, predict not taken), but these do
not depend on the dynamic behavior of the code.

Copyright © 2019, Elsevier Inc. All rights Reserved

B
ranch P

rediction

18

Very Simple Predictor – not practical

 Assume we have a for loop

 for(i=0; i<N; i++) in assemlbly

loop_start: loop starts here

PC1: beq r1, r2, loop_start

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 7

19

Branch History Table

 A small memory indexed by the lower portion of
the address of the branch instruction.

 The memory contains only 1-bit, to predict taken
or untaken

 If the prediction is incorrect, the prediction bit is
inverted.

 In a loop, it mispredicts twice
 End of loop case, when it exits instead of looping as

before

 First time through loop on next time through code,
when it predicts exit instead of looping

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

20

1-Bit Predictor

 1-Bit bimodal predictor

 Consider the following example
 for(i=0;i<10;i++) {

 ………

 }

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

21Copyright © 2012, Elsevier Inc. All rights reserved.

Consider a loop that is taken 9 times in a row then
not taken

?

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 8

22

2-Bit Predictor

 Uses 2 bits to add some hysteresis to the
prediction – Compare with 1 bit?

 2 bits are as good as N bits (approx.)

Copyright © 2012, Elsevier Inc. All rights reserved.

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

Other variation,
use a saturating
counter

23

2-bit Predictor

 4096 entries 2-bit predictor miss rate

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

