
The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors
 intel

 Compiler-based static approaches
 Not as successful outside of scientific applications
 Popular in PMD for energy consumption reasons.
 ARM Cortex-A8

Introduction

3Copyright © 2019, Elsevier Inc. All rights Reserved

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to maximize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)
 For (i=0;i<100;i++) x[i]=x[i]+y[i];

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall (hazard)

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6Copyright © 2019, Elsevier Inc. All rights Reserved

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use register renaming techniques

Introduction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 3

7Copyright © 2019, Elsevier Inc. All rights Reserved

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

8Copyright © 2019, Elsevier Inc. All rights Reserved

Examples

 or instruction dependent on
add and sub

 The value in x1 depends on
the branch

 Assume x4 isn’t used after
skip
 Possible to move sub before

the branch

Introduction• Example 1:
add x1,x2,x3
beq x4,x0,L
sub x1,x1,x6

L: …
or x7,x1,x8

• Example 2:
add x1,x2,x3
beq x12,x0,skip
sub x4,x5,x6
add x5,x4,x9

skip:
or x7,x8,x9

9Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniq
ues

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 4

10Copyright © 2019, Elsevier Inc. All rights Reserved

Pipeline Stalls

1. Loop: fld f0,0(x1)
2. stall
3. fadd.d f4,f0,f2
4. stall
5. stall
6. fsd f4,0(x1)
7. addi x1,x1,-8
8. bne x1,x2,Loop

C
om

piler Techniq
ues

1. Loop: fld f0,0(x1)
2. addi x1,x1,-8
3. fadd.d f4,f0,f2
4. stall
5. stall
6. fsd f4,8(x1)
7. bne x1,x2,Loop

11Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

1. Loop: fld f0,0(x1)

2. fadd.d f4,f0,f2

3. fsd f4,0(x1) //drop addi & bne

4. fld f6,-8(x1)

5. fadd.d f8,f6,f2

6. fsd f8,-8(x1) //drop addi & bne

7. fld f0,-16(x1)

8. fadd.d f12,f0,f2

9. fsd f12,-16(x1) //drop addi & bne

10. fld f14,-24(x1)

11. fadd.d f16,f14,f2

12. fsd f16,-24(x1)

13. addi x1,x1,-32

14. bne x1,x2,Loop

C
om

piler Techniq
ues

 note: number
of live registers
vs. original loop

1

2

12Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

1. Loop: fld f0,0(x1)

2. fld f6,-8(x1)

3. fld f8,-16(x1)

4. fld f14,-24(x1)

5. fadd.d f4,f0,f2

6. fadd.d f8,f6,f2

7. fadd.d f12,f0,f2

8. fadd.d f16,f14,f2

9. fsd f4,0(x1)

10. fsd f8,-8(x1)

11. fsd f12,-16(x1)

12. fsd f16,-24(x1)

13. addi x1,x1,-32

14. bne x1,x2,Loop

C
om

piler Techniq
ues

 14 cycles
 3.5 cycles per element

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 5

13Copyright © 2019, Elsevier Inc. All rights Reserved

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

piler Techniq
ues

14Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction

 Basic 2-bit predictor:
 For each branch:

 Predict taken or not taken
 If the prediction is wrong two consecutive times, change prediction

 Correlating predictor:
 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes of preceding n

branches
 (m,n) predictor: behavior from last m branches to choose from 2m n-bit

predictors

 Tournament predictor:
 Combine correlating predictor with local predictor

B
ranch P

rediction

15

Branch Prediction

 Branching completes in 2 cycles – We know the
target address after the second stage

 1 Cycle delay

Copyright © 2019, Elsevier Inc. All rights Reserved

PC

Instruction
Memory

PC+4

fetch
Decode

Check the
condition

Calculate
the branch
target
address

?

B
ranch P

rediction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 6

16

Branch Prediction

Copyright © 2019, Elsevier Inc. All rights Reserved

B
ranch P

rediction

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3 add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

17

Branch Prediction

 Dynamic scheduling deals with data dependence
improving, the limiting factor is the control
dependence.

 Branch prediction is important for processors
that maintains a CPI of 1, but it is crucial for
processors who tries to issue more than one
instruction per cycle (CPI < 1).

 We have already studied some techniques
(delayed branch, predict not taken), but these do
not depend on the dynamic behavior of the code.

Copyright © 2019, Elsevier Inc. All rights Reserved

B
ranch P

rediction

18

Very Simple Predictor – not practical

 Assume we have a for loop

 for(i=0; i<N; i++) in assemlbly

loop_start: loop starts here

PC1: beq r1, r2, loop_start

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 7

19

Branch History Table

 A small memory indexed by the lower portion of
the address of the branch instruction.

 The memory contains only 1-bit, to predict taken
or untaken

 If the prediction is incorrect, the prediction bit is
inverted.

 In a loop, it mispredicts twice
 End of loop case, when it exits instead of looping as

before

 First time through loop on next time through code,
when it predicts exit instead of looping

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

20

1-Bit Predictor

 1-Bit bimodal predictor

 Consider the following example
 for(i=0;i<10;i++) {

 ………

 }

Copyright © 2012, Elsevier Inc. All rights reserved.

B
ranch P

rediction

21Copyright © 2012, Elsevier Inc. All rights reserved.

Consider a loop that is taken 9 times in a row then
not taken

?

The University of Adelaide, School of Computer Science 23 October 2018

Chapter 2 — Instructions: Language of the Computer 8

22

2-Bit Predictor

 Uses 2 bits to add some hysteresis to the
prediction – Compare with 1 bit?

 2 bits are as good as N bits (approx.)

Copyright © 2012, Elsevier Inc. All rights reserved.

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

Other variation,
use a saturating
counter

23

2-bit Predictor

 4096 entries 2-bit predictor miss rate

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

