
The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

Introduction

3Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 2

4Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Performance Gap

Introduction

5Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references/second
 = 409.6 GB/s!

 DRAM bandwidth is only 8% of this (34.1 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduction

6

Dynamic RAM

 One transistor

 Data stored as charge on a capacitor

 Leaks need refreshing

Copyright © 2019, Elsevier Inc. All rights Reserved

Word line

Bit line

Switching element

Storage element

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 3

7

Dynamic RAM

Copyright © 2019, Elsevier Inc. All rights Reserved

Sense amplifier +MUX

R
ow

 D
ecoder

2n x 2m array

m+n n

m

Introduction

8

Static RAM

 Cross coupled inverters (2 transistor each)
+ 2 access transistor

Copyright © 2019, Elsevier Inc. All rights Reserved

Row select

bi
t l

in
e

bi
t l

in
e

9Copyright © 2019, Elsevier Inc. All rights Reserved

memory

 Would like a memory that is fast, big and cheap.
 Hierarchy of memories (multi-level caches, main

memory, disk).
 How to manage the data? Where to put it and

who is responsible for moving it?
 Manual: The programmer does that
 Automatic: The system does that.

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 4

10

Memory Hierarchy

Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

Core
L1 Cache L2 Cache L3 Cache

 1-4 cycles

10 cycles

30 cycles

$I $D

RAM

DISK

50-100
cycles

11Copyright © 2019, Elsevier Inc. All rights Reserved

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduction

12Copyright © 2019, Elsevier Inc. All rights Reserved

Locality

 Temporal Locality
 When you access a specific address, you will

probably access the same address soon

 Spatial Locality
 When you access a specific address, nearby

addresses will be accessed soon (more for
instruction that data)

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 5

13Copyright © 2019, Elsevier Inc. All rights Reserved

Performance and Power

 A Block: The smallest unit of information
transferred between two levels.

 Hit: Item is found in some block in the
upper level (example: Block X)

 Miss: Item needs to be retrieved from a
block in the lower level (Block Y)
 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Introduction

14Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference
 Lower level may be another cache or the main

memory

 When you move a word, get the nearby ones.

Introduction

15Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference
 Also fetch the other words contained within the block

 Takes advantage of spatial locality

 Place block into cache in any location within its set,
determined by address
 block address MOD number of sets in cache

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 6

16Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set
 Fully associative => one set

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy

 Write-back
 Only update lower levels of hierarchy when an updated block

is replaced

 Both strategies use write buffer to make writes
asynchronous

Introduction

17Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block

 Capacity
 Blocks discarded and later retrieved

 Conflict
 Program makes repeated references to multiple addresses

from different blocks that map to the same location in the
cache

Introduction

18Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Speculative and multithreaded processors may
execute other instructions during a miss
 Reduces performance impact of misses

Introduction

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 7

19Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

Introduction

20Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic RAM

 Data stored by charging/discharging a capacitor.
 One access transistor
 One capacitor
 Charges leak, data will be lost in a second
 Must refresh
 Cheap

M
em

ory A
rchitecture

row enable

bi
tli

ne

21Copyright © 2019, Elsevier Inc. All rights Reserved

Static RAM

 Two cross coupled inverters(4 transistors)
 2 access transistors

M
em

ory A
rchitecture

row select

bi
tli

ne

_b
itl

in
e

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology and Optimizations

 Performance metrics
 Latency is concern of cache
 Bandwidth is concern of multiprocessors and I/O
 Access time

 Time between read request and when desired word
arrives

 Cycle time
 Minimum time between unrelated requests to memory

 SRAM memory has low latency, use for
cache

 Organize DRAM chips into many banks for
high bandwidth, use for main memory

M
em

ory Technolog
y and O

ptim
izations

23Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 SRAM
 Requires low power to retain bit
 Requires 6 transistors/bit

 DRAM
 Must be re-written after being read
 Must also be periodically refeshed

 Every ~ 8 ms (roughly 5% of time)
 Each row can be refreshed simultaneously

 One transistor/bit
 Address lines are multiplexed:

 Upper half of address: row access strobe (RAS)
 Lower half of address: column access strobe (CAS)

cache O
rg

anization
M

em
ory Technolog

y and O
ptim

izations

24Copyright © 2019, Elsevier Inc. All rights Reserved

cache Organization -- Placement

 Direct mapped cache

ca
che O

rg
anization

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2019, Elsevier Inc. All rights Reserved

placement -- DM

cache O
rg

anization

2 0 1 0

B y te

o ffs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 1024 Blocks

Each block = one word

Can cache up to

232 bytes = 4 GB

of memory

Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e. index field or

10 low bit of block address

Block offset

= 2 bits

Block Address = 30 bits

Tag = 20 bits Index = 10 bits

Byte address

26Copyright © 2019, Elsevier Inc. All rights Reserved

Placement -- DM
cache O

rg
anization

A d d re s s (s ho w in g b it p o s itio n s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n trie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T a g

3 1 16 1 5 4 3 2 1 0

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

27

Placement -- DM

 Each block frame in cache has an address tag.

 The tags of every cache block that might contain the required data
are checked in parallel.

 A valid bit is added to the tag to indicate whether this entry contains
a valid address.

 The address from the CPU to cache is divided into:
 A block address, further divided into:

 An index field to choose a block set in cache.

 (no index field when fully associative).

 A tag field to search and match addresses in the selected set.

 A block offset to select the data from the block.

Copyright © 2019, Elsevier Inc. All rights Reserved

ca
che O

rg
anization

Block Address Block

OffsetTag Index

The University of Adelaide, School of Computer Science 13 September 2018

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2019, Elsevier Inc. All rights Reserved

Placement -- DM

cache O
rg

anization

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

29Copyright © 2019, Elsevier Inc. All rights Reserved

Set Associative 4KB 4-way
cache O

rg
anization

Address

2 2 8

V TagIndex

0

1

2

253

254

255

D ata V Tag Data V T ag Data V T ag D ata

3222

4 - to -1 m ultip lexo r

H it D a ta

123891011123031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

30Copyright © 2019, Elsevier Inc. All rights Reserved

Placement -- DM

ca
che O

rg
anization

