
The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design
Part II Performance

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 CPUtime = Instruction count x CPI x Clock cycle time

 CPIexecution = CPI with ideal memory

 CPI = CPIexecution + Mem Stall cycles per instruction

 Mem Stall cycles per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

 CPUtime = Instruction Count x (CPIexecution +

Mem Stall cycles per instruction) x Clock cycle time

 CPUtime = IC x (CPIexecution + Mem accesses per
instruction x Miss rate x Miss penalty) x Clock cycle time

 Misses per instruction = Memory accesses per instruction x
Miss rate

 CPUtime = IC x (CPIexecution + Misses per instruction x Miss
penalty) x Clock cycle time

P
erform

ance

3

Write Policy

1 Write Though: Data is written to both the cache block
and to a block of main memory.
 The lower level always has the most updated data; an important feature for

I/O and multiprocessing.
 Easier to implement than write back.
 A write buffer is often used to reduce CPU write stall while data is written to

memory.

2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to
main memory when it’s being replaced from cache.
 Writes occur at the speed of cache
 A status bit called a dirty or modified bit, is used to indicate whether the

block was modified while in cache; if not the block is not written back to main
memory when replaced.

 Uses less memory bandwidth than write through.

W
rite P

olicy

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 2

4

Write Policy

Write Allocate:

The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower

cache level, or main

memory) and not loaded into cache.

W
rite P

olicy

5

Reploacement

 Which block to replace if a cache miss?
 Random

 FIFO

 LRU

 Not MRU

 Optimal ??

 Least frequently used

 The cost of the algorithm (logic and
number of bits)

R
eplacem

ent

6

LRU

 A list to keep track of the order of access
to every block in the set.

 The least recently used block is replaced
(if needed).

 How many bits we need for that?

Copyright © 2012, Elsevier Inc. All rights reserved.

LR
U

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 3

7

Pseudo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H A B C D E F G H

H
H C

LR
U

8

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D

A B C D E F G H

H C D G

LR
U

9

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E

A B C D E F G H

H C D G E B

LR
U

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 4

10

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E B A

A B C D E F G H

H C D G E B F

LR
U

11

Cache Performance

 Assuming the following execution and cache parameters:
 Cache miss penalty = 50 cycles

 Normal instruction execution CPI ignoring memory stalls = 2.0
cycles

 Miss rate = 2%

 Average memory references/instruction = 1.33

 CPU time = IC  [CPI execution + Memory accesses/instruction
 Miss rate  Miss penalty]  Clock cycle time

 CPUtime with cache = IC x (2.0 + (1.33 x 2% x 50)) x clock
cycle time

 = IC x 3.33 x Clock cycle time

 Lower CPI execution increases the impact of cache miss clock
cycles

P
erform

ance

12

Cache Performance
 Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)

with a single level of cache.

 CPIexecution = 1.1

 Instruction mix: 50% arith/logic, 30% load/store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

 CPI = CPIexecution + mem stalls per instruction

 Mem Stalls per instruction =

 Mem accesses per instruction x Miss rate x Miss
penalty

 Mem accesses per instruction = 1 + .3 = 1.3

 Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

 CPI = 1.1 + .975 = 2.075

 The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times
faster

P
erform

ance

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 5

13

Cache Performance
 Suppose for the previous example we double the clock rate to 400 MHZ,

how much faster is this machine, assuming similar miss rate, instruction
mix?

 Since memory speed is not changed, the miss penalty takes more CPU
cycles:

 Miss penalty = 50 x 2 = 100 cycles.

 CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

 Speedup = (CPIold x Cold)/ (CPInew x Cnew)

 = 2.075 x 2 / 3.05 = 1.36

 The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

P
erform

ance

14

Cache Performance

 Suppose a CPU uses separate level one (L1) caches for instructions
and data (Harvard memory architecture) with different miss rates for
instruction and data access:
 CPIexecution = 1.1
 Instruction mix: 50% arith/logic, 30% load/store, 20% control
 Assume a cache miss rate of 0.5% for instruction fetch and a cache data

miss rate of 6%.
 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles

for both memory reads and writes. Find the resulting CPI using this
cache? How much faster is the CPU with ideal memory?

CPI = CPIexecution + mem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Mem Stall cycles per instruction = 1 x 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 +
3.6 = 4.6

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPI would have been = 1.1 + 1.3 X 200 = 261.1

P
erform

ance

15Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

 Victim cache

B
asics

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 6

16Copyright © 2012, Elsevier Inc. All rights reserved.

Ten (11) Advanced Optimizations
 Small and simple first level caches
 Way Prediction
 Pipelined caches
 Non-blocking cache
 Multibanked cache
 Critical word first
 Merging write buffer
 Compiler optimization
 Hardware prefetching
 Compiler prefetching
 Sectored cache

A
dvanced O

ptim
iza

tions

17

Small and Simple

 No mux in the critical path of a direct mapped
cache.

 Bigger cache means more energy.

 CACTI – An idea for the project/paper review

 Many processors takes at least 2 clock cycles to
access the cache, longer hit time may not be that
critical

 The use of a virtual index cache, limits the cache
size to page size  associativity (recently a trend
to increase associativity).

Copyright © 2012, Elsevier Inc. All rights reserved.

A
dvanced O

ptim
iza

tions

18Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 7

19Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
iza

tions

20Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Misprediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

A
dvanced O

ptim
iza

tions

21Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch miss-prediction penalty (longer
pipeline).

 Makes it easier to increase associativity

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches

 For out-of-order
execution (later on
this point).

 Allow hits before
previous misses
complete
 “Hit under miss”
 “Hit under multiple

miss”

 L2 must support this
 In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
iza

tions

Single core i7 using SPEC2006

23Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanced O

ptim
iza

tions

24Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanced O

ptim
iza

tions

No write
buffering

Write buffering

26Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order (row major access)

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks
 Requires more memory accesses but improves

locality of accesses

A
dvanced O

ptim
iza

tions

27Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block) (the 2nd one goes to
instruction stream buffer, must be checked if
found do not go to cache).

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
iza

tions

29Copyright © 2012, Elsevier Inc. All rights reserved.

Sectored Cache

 Divide the block into subblocks
 Ach subblock has its own V and D bits
 How is that helpful?

A
dvanced O

ptim
iza

tions

30Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 11

31

Internal Organization of DRAM

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Technolog
y and O

ptim
izations

32Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device

M
em

ory Technolog
y and O

ptim
izations

33Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 12

34Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

M
em

ory Technolog
y and O

ptim
izations

35Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1333 MHz

 GDDR5 is graphics memory based on DDR3

M
em

ory Technolog
y and O

ptim
izations

36Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to

refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of
socketted DIMM modules

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 13

37Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Power Consumption

M
em

ory Technolog
y and O

ptim
izations

38

Stacked/Embedded DRAMs

 Stacked DRAMs in same package as
processor
 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Technolog
y and O

ptim
izations

39Copyright © 2019, Elsevier Inc. All rights Reserved

Flash Memory

 Type of EEPROM
 Types: NAND (denser) and NOR (faster)
 NAND Flash:

 Reads are sequential, reads entire page (.5 to 4
KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes
 SDRAM: 40 ns for first byte, 4.8 GB/s for

subsequent bytes
 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X

slower
 300 to 500X faster than magnetic disk

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 14

40Copyright © 2019, Elsevier Inc. All rights Reserved

NAND Flash Memory

 Must be erased (in blocks) before being
overwritten

 Nonvolatile, can use as little as zero power
 Limited number of write cycles (~100,000)
 $2/GiB, compared to $20-40/GiB for SDRAM

and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance

and 2X improvement in read performance

M
em

ory Technolog
y and O

ptim
izations

41Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors: dynamic errors

 Detected and fixed by error correcting codes
(ECC)

 Hard errors: permanent errors
 Use spare rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
em

ory Technolog
y and O

ptim
izations

42Copyright © 2019, Elsevier Inc. All rights Reserved

Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches
 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching

A
dvanced O

ptim
izations

