
The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design
Part II Performance

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 CPUtime = Instruction count x CPI x Clock cycle time

 CPIexecution = CPI with ideal memory

 CPI = CPIexecution + Mem Stall cycles per instruction

 Mem Stall cycles per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

 CPUtime = Instruction Count x (CPIexecution +

Mem Stall cycles per instruction) x Clock cycle time

 CPUtime = IC x (CPIexecution + Mem accesses per
instruction x Miss rate x Miss penalty) x Clock cycle time

 Misses per instruction = Memory accesses per instruction x
Miss rate

 CPUtime = IC x (CPIexecution + Misses per instruction x Miss
penalty) x Clock cycle time

P
erform

ance

3

Write Policy

1 Write Though: Data is written to both the cache block
and to a block of main memory.
 The lower level always has the most updated data; an important feature for

I/O and multiprocessing.
 Easier to implement than write back.
 A write buffer is often used to reduce CPU write stall while data is written to

memory.

2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to
main memory when it’s being replaced from cache.
 Writes occur at the speed of cache
 A status bit called a dirty or modified bit, is used to indicate whether the

block was modified while in cache; if not the block is not written back to main
memory when replaced.

 Uses less memory bandwidth than write through.

W
rite P

olicy

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 2

4

Write Policy

Write Allocate:

The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower

cache level, or main

memory) and not loaded into cache.

W
rite P

olicy

5

Reploacement

 Which block to replace if a cache miss?
 Random

 FIFO

 LRU

 Not MRU

 Optimal ??

 Least frequently used

 The cost of the algorithm (logic and
number of bits)

R
eplacem

ent

6

LRU

 A list to keep track of the order of access
to every block in the set.

 The least recently used block is replaced
(if needed).

 How many bits we need for that?

Copyright © 2012, Elsevier Inc. All rights reserved.

LR
U

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 3

7

Pseudo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H A B C D E F G H

H
H C

LR
U

8

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D

A B C D E F G H

H C D G

LR
U

9

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E

A B C D E F G H

H C D G E B

LR
U

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 4

10

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E B A

A B C D E F G H

H C D G E B F

LR
U

11

Cache Performance

 Assuming the following execution and cache parameters:
 Cache miss penalty = 50 cycles

 Normal instruction execution CPI ignoring memory stalls = 2.0
cycles

 Miss rate = 2%

 Average memory references/instruction = 1.33

 CPU time = IC [CPI execution + Memory accesses/instruction
 Miss rate Miss penalty] Clock cycle time

 CPUtime with cache = IC x (2.0 + (1.33 x 2% x 50)) x clock
cycle time

 = IC x 3.33 x Clock cycle time

 Lower CPI execution increases the impact of cache miss clock
cycles

P
erform

ance

12

Cache Performance
 Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)

with a single level of cache.

 CPIexecution = 1.1

 Instruction mix: 50% arith/logic, 30% load/store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

 CPI = CPIexecution + mem stalls per instruction

 Mem Stalls per instruction =

 Mem accesses per instruction x Miss rate x Miss
penalty

 Mem accesses per instruction = 1 + .3 = 1.3

 Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

 CPI = 1.1 + .975 = 2.075

 The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times
faster

P
erform

ance

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 5

13

Cache Performance
 Suppose for the previous example we double the clock rate to 400 MHZ,

how much faster is this machine, assuming similar miss rate, instruction
mix?

 Since memory speed is not changed, the miss penalty takes more CPU
cycles:

 Miss penalty = 50 x 2 = 100 cycles.

 CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

 Speedup = (CPIold x Cold)/ (CPInew x Cnew)

 = 2.075 x 2 / 3.05 = 1.36

 The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

P
erform

ance

14

Cache Performance

 Suppose a CPU uses separate level one (L1) caches for instructions
and data (Harvard memory architecture) with different miss rates for
instruction and data access:
 CPIexecution = 1.1
 Instruction mix: 50% arith/logic, 30% load/store, 20% control
 Assume a cache miss rate of 0.5% for instruction fetch and a cache data

miss rate of 6%.
 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles

for both memory reads and writes. Find the resulting CPI using this
cache? How much faster is the CPU with ideal memory?

CPI = CPIexecution + mem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Mem Stall cycles per instruction = 1 x 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 +
3.6 = 4.6

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPI would have been = 1.1 + 1.3 X 200 = 261.1

P
erform

ance

15Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

 Victim cache

B
asics

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 6

16Copyright © 2012, Elsevier Inc. All rights reserved.

Ten (11) Advanced Optimizations
 Small and simple first level caches
 Way Prediction
 Pipelined caches
 Non-blocking cache
 Multibanked cache
 Critical word first
 Merging write buffer
 Compiler optimization
 Hardware prefetching
 Compiler prefetching
 Sectored cache

A
dvanced O

ptim
iza

tions

17

Small and Simple

 No mux in the critical path of a direct mapped
cache.

 Bigger cache means more energy.

 CACTI – An idea for the project/paper review

 Many processors takes at least 2 clock cycles to
access the cache, longer hit time may not be that
critical

 The use of a virtual index cache, limits the cache
size to page size associativity (recently a trend
to increase associativity).

Copyright © 2012, Elsevier Inc. All rights reserved.

A
dvanced O

ptim
iza

tions

18Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 7

19Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
iza

tions

20Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Misprediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

A
dvanced O

ptim
iza

tions

21Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch miss-prediction penalty (longer
pipeline).

 Makes it easier to increase associativity

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 8

22Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches

 For out-of-order
execution (later on
this point).

 Allow hits before
previous misses
complete
 “Hit under miss”
 “Hit under multiple

miss”

 L2 must support this
 In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
iza

tions

Single core i7 using SPEC2006

23Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanced O

ptim
iza

tions

24Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 9

25Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanced O

ptim
iza

tions

No write
buffering

Write buffering

26Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order (row major access)

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks
 Requires more memory accesses but improves

locality of accesses

A
dvanced O

ptim
iza

tions

27Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block) (the 2nd one goes to
instruction stream buffer, must be checked if
found do not go to cache).

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 10

28Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
iza

tions

29Copyright © 2012, Elsevier Inc. All rights reserved.

Sectored Cache

 Divide the block into subblocks
 Ach subblock has its own V and D bits
 How is that helpful?

A
dvanced O

ptim
iza

tions

30Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 11

31

Internal Organization of DRAM

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Technolog
y and O

ptim
izations

32Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device

M
em

ory Technolog
y and O

ptim
izations

33Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 12

34Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

M
em

ory Technolog
y and O

ptim
izations

35Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1333 MHz

 GDDR5 is graphics memory based on DDR3

M
em

ory Technolog
y and O

ptim
izations

36Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to

refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of
socketted DIMM modules

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 13

37Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Power Consumption

M
em

ory Technolog
y and O

ptim
izations

38

Stacked/Embedded DRAMs

 Stacked DRAMs in same package as
processor
 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Technolog
y and O

ptim
izations

39Copyright © 2019, Elsevier Inc. All rights Reserved

Flash Memory

 Type of EEPROM
 Types: NAND (denser) and NOR (faster)
 NAND Flash:

 Reads are sequential, reads entire page (.5 to 4
KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes
 SDRAM: 40 ns for first byte, 4.8 GB/s for

subsequent bytes
 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X

slower
 300 to 500X faster than magnetic disk

M
em

ory Technolog
y and O

ptim
izations

The University of Adelaide, School of Computer Science 24 September 2018

Chapter 2 — Instructions: Language of the Computer 14

40Copyright © 2019, Elsevier Inc. All rights Reserved

NAND Flash Memory

 Must be erased (in blocks) before being
overwritten

 Nonvolatile, can use as little as zero power
 Limited number of write cycles (~100,000)
 $2/GiB, compared to $20-40/GiB for SDRAM

and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance

and 2X improvement in read performance

M
em

ory Technolog
y and O

ptim
izations

41Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors: dynamic errors

 Detected and fixed by error correcting codes
(ECC)

 Hard errors: permanent errors
 Use spare rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
em

ory Technolog
y and O

ptim
izations

42Copyright © 2019, Elsevier Inc. All rights Reserved

Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches
 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching

A
dvanced O

ptim
izations

