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Memory Technology

 CPUtime =   Instruction count x  CPI  x  Clock cycle time

 CPIexecution =   CPI with ideal memory

 CPI =    CPIexecution +   Mem Stall cycles per instruction 

 Mem Stall cycles per instruction =  

Mem accesses per instruction  x   Miss rate x  Miss penalty

 CPUtime =  Instruction Count x   (CPIexecution +  

Mem Stall  cycles per instruction)    x   Clock cycle time

 CPUtime =  IC x  (CPIexecution +  Mem accesses per 
instruction  x Miss rate x Miss penalty)  x   Clock cycle time

 Misses per instruction =  Memory accesses per instruction  x  
Miss rate

 CPUtime =  IC x (CPIexecution + Misses per instruction  x  Miss 
penalty) x Clock cycle time
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Write Policy

1 Write Though:  Data is written to both the cache block 
and to a block of main memory.
 The lower level always has the most updated data; an important feature for 

I/O and multiprocessing.
 Easier to implement than write back.
 A write buffer is often used to reduce CPU write stall while data is written to 

memory.

2 Write back:  Data is written or updated only to the cache 
block.  The modified or dirty cache block is written to 
main memory when it’s being replaced from cache.
 Writes occur at the speed of cache
 A status bit called a dirty or modified bit, is used to indicate whether the 

block was modified while in cache; if not the block is not written back to main 
memory when replaced.

 Uses less memory bandwidth than write through.
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Write Policy

Write Allocate:

The cache block is loaded on a write miss 
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower 

cache level, or main 

memory) and not loaded into cache.
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Reploacement

 Which block to replace if a cache miss?
 Random

 FIFO

 LRU

 Not MRU

 Optimal ??

 Least frequently used 

 The cost of the algorithm (logic and 
number of bits)
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LRU

 A list to keep track of the order of access 
to every block in the set.

 The least recently used block is replaced 
(if needed).

 How many bits we need for that?

Copyright © 2012, Elsevier Inc. All rights reserved.
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Pseudo LRU
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A B C D E F G H A B C D E F G H

H
H C
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Psuedo LRU
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A B C D E F G H

H C D

A B C D E F G H

H C D G
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Psuedo LRU
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A B C D E F G H

H C D G E

A B C D E F G H

H C D G E B
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Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E B A

A B C D E F G H

H C D G E B F
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Cache Performance

 Assuming the following execution and cache parameters:
 Cache miss penalty =  50 cycles

 Normal instruction execution CPI ignoring memory stalls  =  2.0 
cycles

 Miss rate  = 2%

 Average memory references/instruction  =  1.33

 CPU time  =  IC  [CPI execution  +  Memory accesses/instruction 
 Miss rate  Miss penalty ]  Clock cycle time 

 CPUtime with cache  =  IC  x  (2.0 + (1.33 x 2% x 50)) x  clock 
cycle time

 =  IC  x  3.33  x  Clock cycle time

 Lower CPI execution increases the impact of cache miss clock 
cycles
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Cache Performance
 Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) 

with a single level of cache.

 CPIexecution =  1.1

 Instruction mix:   50% arith/logic,  30% load/store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

 CPI =   CPIexecution +   mem stalls per instruction

 Mem Stalls per instruction =  

 Mem accesses per instruction  x  Miss rate x Miss 
penalty

 Mem accesses per instruction =  1  +   .3   =  1.3

 Mem Stalls per instruction  =  1.3 x  .015 x 50  =   0.975

 CPI =  1.1  +  .975 =   2.075

 The ideal memory CPU with no misses is  2.075/1.1 =  1.88 times 
faster 
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Cache Performance
 Suppose for the previous example we double the clock rate to 400 MHZ, 

how much faster is this machine, assuming similar miss rate, instruction 
mix?

 Since memory speed is not changed, the miss penalty takes more CPU 
cycles:

 Miss penalty =  50  x  2  =  100 cycles.

 CPI =  1.1 +  1.3 x .015 x 100 =  1.1 + 1.95 =  3.05 

 Speedup  =    (CPIold x Cold)/ (CPInew x Cnew)

 =   2.075  x 2 /  3.05  =  1.36

 The new machine is only 1.36 times faster rather than 2 

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more 
memory impact on CPI.

P
erform

ance

14

Cache Performance

 Suppose a CPU uses separate level  one (L1)  caches for  instructions 
and data  (Harvard memory architecture)  with different miss rates for 
instruction and data access:
 CPIexecution =  1.1
 Instruction mix:   50% arith/logic,  30% load/store, 20% control
 Assume a cache miss rate of  0.5% for instruction fetch and a cache data 

miss rate of  6%. 
 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles 

for both memory reads and writes.         Find the resulting CPI using this 
cache?   How much faster is the CPU with ideal memory?

CPI =   CPIexecution +   mem stalls per instruction

Mem Stall  cycles per instruction =     Instruction Fetch Miss rate x Miss Penalty  +
Data Memory Accesses Per Instruction x  Data Miss Rate x  Miss Penalty

Mem Stall  cycles per instruction =    1 x 0.5/100  x 200   +   0.3 x  6/100  x   200  =   1   +  
3.6  = 4.6

CPI =   CPIexecution +   mem stalls per instruction  =  1.1  + 4.6  =   5.7

The CPU with ideal cache (no misses)  is  5.7/1.1 =  5.18  times faster 
With no cache the CPI would have been  =   1.1  +  1.3 X 200  =  261.1
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Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

 Victim cache

B
asics        
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Ten (11) Advanced Optimizations
 Small and simple first level caches
 Way Prediction
 Pipelined caches
 Non-blocking cache
 Multibanked cache
 Critical word first
 Merging write buffer
 Compiler optimization
 Hardware prefetching
 Compiler prefetching
 Sectored cache
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Small and Simple

 No mux in the critical path of a direct mapped 
cache.

 Bigger cache means more energy.

 CACTI – An idea for the project/paper review

 Many processors takes at least 2 clock cycles to 
access the cache, longer hit time may not be that 
critical

 The use of a virtual index cache, limits the cache 
size to page size  associativity (recently a trend 
to increase associativity).

Copyright © 2012, Elsevier Inc. All rights reserved.
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L1 Size and Associativity

Access time vs. size and associativity
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L1 Size and Associativity

Energy per read vs. size and associativity
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Way Prediction

 To improve hit time, predict the way to pre-set 
mux
 Misprediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8
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Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium:  1 cycle
 Pentium Pro – Pentium III:  2 cycles
 Pentium 4 – Core i7:  4 cycles

 Increases branch miss-prediction penalty (longer 
pipeline).

 Makes it easier to increase associativity
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Nonblocking Caches

 For out-of-order 
execution (later on 
this point).

 Allow hits before 
previous misses 
complete
 “Hit under miss”
 “Hit under multiple 

miss”

 L2 must support this
 In general, 

processors can hide 
L1 miss penalty but 
not L2 miss penalty
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Single core i7 using SPEC2006
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Multibanked Caches

 Organize cache as independent banks to 
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address
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Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it 

arrives

 Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched
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Merging Write Buffer

 When storing to a block that is already pending in the 
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
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Write buffering
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Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in 

sequential order (row major access)

 Blocking
 Instead of accessing entire rows or columns, 

subdivide matrices into blocks
 Requires more memory accesses but improves 

locality of accesses

A
dvanced O

ptim
iza

tions

27Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next 
sequential block) (the 2nd one goes to 
instruction stream buffer, must be checked if 
found do not go to cache).

A
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Compiler Prefetching

 Insert prefetch instructions before data is 
needed

 Non-faulting:  prefetch doesn’t cause 
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software 
pipelining
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Sectored Cache

 Divide the block into subblocks
 Ach subblock has its own V and D bits
 How is that helpful?
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Summary
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Internal Organization of DRAM
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Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept 

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device
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Memory Optimizations
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Memory Optimizations
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Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1333 MHz

 GDDR5 is graphics memory based on DDR3
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Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to 

refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of 
socketted DIMM modules
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Memory Power Consumption
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Stacked/Embedded DRAMs

 Stacked DRAMs in same package as 
processor
 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved
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Flash Memory

 Type of EEPROM
 Types:  NAND (denser) and NOR (faster)
 NAND Flash:

 Reads are sequential, reads entire page (.5 to 4 
KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes
 SDRAM:  40 ns for first byte, 4.8 GB/s for 

subsequent bytes
 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X 

slower
 300 to 500X faster than magnetic disk
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NAND Flash Memory

 Must be erased (in blocks) before being 
overwritten

 Nonvolatile, can use as little as zero power
 Limited number of write cycles (~100,000)
 $2/GiB, compared to $20-40/GiB for SDRAM 

and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance 

and 2X improvement in read performance
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Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors:  dynamic errors

 Detected and fixed by error correcting codes 
(ECC)

 Hard errors:  permanent errors
 Use spare rows to replace defective rows

 Chipkill:  a RAID-like error recovery technique
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Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches
 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching
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