Parallel Processing
SIMD, Vector and
GPU’s

EECS4201 Fall 2016 York University

11/13/2018

Introduction

Vector and array processors
Chaining
GPU

Flynn's taxonomy

SISD: Single instruction operating on
Single Data

SIMD: Single instruction operating on
Multiple Data

MISD: Multiple instruction operating on
Single Data

MIMD: Multiple instructions operating on
Multiple Data

SIMD

SIMD architectures can exploit significant
data-level parallelism for:
matrix-oriented scientific computing
media-oriented image and sound processors
SIMD is more energy efficient than MIMD
Only needs to fetch one instruction per data operation
Makes SIMD attractive for personal mobile devices
SIMD allows programmer to continue to
think sequentially

Vector vs. Array Processors

Array processors same instruction
operating on many data elements at the
same time (space)

Vector processors Same instruction
operating on many data in a pipeline
fashion (what is the difference between
this and regular pipelined processors?)

LD V1<A[] LDO LD1 LD2 LD3 LDO LDO
ADD V2 V142 ADO AD1 AD2 AD3 LD1 ADO ADO
MUL V3 V2 x2 MLO ML1 ML2 ML3 LD2 AD1 MLO MLO
St All «-V3 STO ST1 ST2 ST3 LD3 AD2 ML1 STO STO

Vector vs. Array processors

Array Processor Vector Processor

PEO PE1 PE2 PE3 LD ADD MUL ST SISD

AD3 ML2 ST1 LD1
ML3 ST2 AD2
ST3 ML1

ST1

LD2

AD2

ML2

ST2

LD3

AD3

ML3

11/13/2018

Vector processors

Energy efficient: we fetch only one

instruction to perform many operations.

Can have much deeper pipelines, no
interlocks, no dependence between the
vector elements

Stride may not be 1

Performance depends on what kind of
parallelism in your program.

11/13/2018

Vector Processors

Cray-1 was the first commercially
successful vector processor

VMIPS

Example architecture: VMIPS
Loosely based on Cray-1
Vector registers
Each register holds a 64-element, 64 bits/element vector
Register file has 16 read ports and 8 write ports
Vector functional units
Fully pipelined
Data and control hazards are detected
Vector load-store unit
Fully pipelined
One word per clock cycle after initial latency
Scalar registers
32 general-purpose registers
32 floating-point registers

VMIPS

VMIPS Instructions

ADDVV.D \ARYPAVE] add two vectors

ADDVS.D V1V2,FO add vector to a scalar

v V1,R1 vector load from address

N R1,V1 Vector store at R1

MULVV.D V1V2V3 vector multiply

DIVVV.D V1Vv2\V3 Vector div (element by element)

LVWS V1,(R1,R2) Load vector from R1, stride=R2

LVI V1,(R1+V2) Load V1 with elements at R1+V2(i)

CvI V1,R1 create an index vector in V1 (0, R1,
2R1,3R1,...

SEQVV.D V1\Vv2 Compare elements V1,V2 0 or 1in
VM EQ, NE, GT, ...

MVTM VM, FO Move contents of FO to vec. mask
reg.

MTCI VLR,R1 Move rl to vector length register

11/13/2018

Vector Processing

vV V |V
* ADDV V3, V1, V2 1 2 |3
* After an initial latency
(depth of pipeline) we |

get one result per cycle.

* We can do this with a
simple loop, what is the
difference?

1]

Vector Code

* Chaining: No need to wait until the vector
register is loaded, you can start after the
first element is ready.

()

Chaining
R
vV |V V 3
* Chaining 1 2 3
- ADD V3,V2,V1
- MUL V4, V3, R .

Chaining: No need to
wait until the vector
register is loaded, you
can start after the first
element is ready.

—
.
v

[—)

11/13/2018

Vector ADD scalar A=B+C

R1«A 1
R2 <« B 1
R3«C 1
X: LD R4, 0(R2) 11
LD R5, O(R3) 11
R2++; R3++;R1++ 3
ADD R6, R4, R5 4
ST R6,-8(R1) 11
Branch X 1

11/13/2018

Vector Execution Time

Execution time depends on three factors:
Length of operand vectors
Structural hazards
Data dependencies
VMIPS functional units consume one
element per clock cycle
Execution time is approximately the vector length
Convey

Set of vector instructions that could potentially
execute together (could be more than one instruction)

Example

Consider the following example:
For (i=0;i<50.i++)
clil = (alil + b[i])/2
Sequence of improvements from in order

execution with one bank to chained vector
processor with multiple banks

Assembly Code

Initialize registers RO, R1, R2, R3

Loop

LD

LD
ADD
SR
ST
ADDI
ADDI
ADDI
ADDI
BEQZ

R4, O(R1)
RS, O(R2)
R6,R4,R5
R6, R6, 1
R6, O(R3)
R1,R1,4

R2, R2, 4
R3, R3, 4
RO, RO, -1
RO, LOOP

11
11

N R R PR

= 44*50

11/13/2018

