Vector Code - No Chaining

The loop is vectorizable

Initialize registers (including V_length and
stride) 2+5 dynamic instruction

Lv Vi, R1 11+50-1

Lv V2, R2 11+50-1

ADDV  V3,V1,V2 4+50-1

SLv V3, V3,1 1+50-1

SV V3, R4 11+50-1 =283+2

Vector Code - Chaining 1-port
111 49 11 1 49 ‘

4

49 |

111, 49

Vector Code 2 load+1 store

Chaining and 2 memory banks?

11 49

4 77+2=79

11/21/2018




Chimes

Convey:
convoy, which is the set of vector instructions that could
potentially begin execution together in one clock period
Sequences with read-after-write dependency hazards can
be in the same convey via chaining
Chaining
Allows a vector operation to start as soon as the individual
elements of its vector source operand become available
Chime
Unit of time to execute one convey
m conveys executes in m chimes
For vector length of n, requires m x n clock cycles

11/21/2018

Example

Lv V1,Rx ;load vector X
MULVS.D V2V1,FO ;vector-scalar multiply
Lv V3,Ry ;load vector Y
ADDVV.D Vav2ZVv3 ;add two vectors

N RyV4 ;store the sum
Convoys:

MUtVSD V2V1,FO Vector-statar-multiply

V4NV2NV3
Ryv4

;store the stm

4 conveys =>4 x 64 » 256 clocks (or 4 clocks per result)

Vector length

In the previous example, the vector length
is less than the VREG length.

What if more (operation on a vector of
1000 elements)

Loops each load perform on a 64 element
vector (need to adjust vector length in the
last iteration)




Vector Stripmining

= Vector length not known at compile time?
= Use Vector Length Register (VLR)

= Use strip mining for vectors over the maximum
length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (= 0; <= (/MVL); j=j+1) { outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[l =a* X[i] + Y[il ; *main operation*/
low = low + VL; /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

}

Vakse ol

0 Y S S

o NVLY s 2o WL in-u

Amgati 8 om

R s RS T T -1
SMVL SZaNNL s3aMWL

11/21/2018

Effect of Memory

Load/store unit is more complicated than FU’s
Start-up time, is the time for the first word into a register
Memory system must be designed to support high
bandwidth for vector loads and stores
Spread accesses across multiple banks

Control bank addresses independently

Load or store non sequential words

Support multiple vector processors sharing the same memory
Example:

32 processors, each generating 4 loads and 2 stores/cycle

Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

How many memory banks needed?

Example

Cray T932 has 32 processors. Each
processor is capable of generating 4 loads
and 2 stores per clock cycle.

Clock cycle is 2.167 ns, SRAM cycle time 15
ns. How many bank do we need to allow

the system to run at a full memory
bandwidth?




Example

*8 memory banks, bank busy time 6 cycles,
total memory latency 12 cycles.

*What is the difference between a 64-
element vector load with a stride of 1 and
327

Stride

+ Consider:
for (i = 0; i < 100; i=i+1)
for (j=0; j < 100; j=j+1) {
Alilljl = 0.0;
for (k = 0; k < 100; k=k+1)
Alil[j] = A[i][j] + BliT[k] * DIK]LT;
}

* Must vectorize multiplication of rows of B with columns of D
* Use non-unit stride

« Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time: [ 30 ]
#banks / LCM(stride,#banks) < bank busy time

Strides
o SEQ M (O |D
0 |1 |2
0 1 2
4 5 6
8 9 10

~| O O | W N[ | O
=
o
-
~
=
o]

11/21/2018




Strides

MOD can be calculated very efficiently if the prime
number is 1 less than a power of 2.

Division still a problem

But if we change the mapping such that

Address in a bank = address MOD number of words in
a bank.

Since the number of words in a bank is usually a power
of 2, that will lead to a very efficient implementation.
Consider the following example, the first case is the
usual 4 banks, then 3 banks with sequential
interleaving and modulo interleaving and notice the
conflict free access to rows and columns of a 4 by 4
matrix

11/21/2018

Vector Mask Register

What if we have a conditional IF statement inside the
loop?

Using scalar architecture, that introduces control
dependence.

The vector-mask control: A mask register is used to
conditionally execute using a Boolean condition.

When the vector-mask register is enabled, any vector
instruction executed operate only on vector elements
whose corresponding entries in the VMR are ones.

The rest of the elements are unaffected.

Clearing the vector mask register, sets to all 1’s and
operations are performed on all the elements.

Does not save execution time for masked elements

Vector Mask Register

Consider:
for (i =0; i < 64; i=i+1)
if (X[i] '=0)

X[il = X[i] = Y[il;
Use vector mask register to “disable” elements:

v V1,Rx ;load vector X into V1

v V2,Ry ;load vector Y

L.D FO,#0 ;load FP zero into FO
SNEVS.D  V1,FO ;sets VM(i) to 1 if V(i)!=FO
SUBVV.D V1Vviv2 ;subtract under vector mask
NY Rx,V1 ;store the result in X




Scatter-Gather

 Consider:
for (i=0;i<n;i=i+1)
AIK[iTl = ALK[i] + CIMIill;

* Use index vector:

Lv Vk, Rk ;load K

LVI Va, (Ra+Vk) ;load A[K[]]

LV Vm, Rm ;load M

LVI Vc, (Rc+Vm) ;load C[M[]]

ADDVV.D Va, Va, Vc ;add them

svi (Ra+Vk), Va ;store A[K[]] ()
Multiple lanes

* Operations are interleaved across multiple lanes.

Allows for multiple hardware lanes and no changes to machine
code

Not Quite SIMD

* Intel extension MMXx, SSE, AVX, PowerPC AltiVec, ARM
Advanced SIMD

* No vector length, just depends on the instruction, the
register can be considered 16 8-bit numbers, 8 16-bit
numbers, ...

(=)

11/21/2018




