
The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 1

15

Instruction Set Architecture

 Class of ISA
 General-purpose registers

 Register-memory vs load-store

 RISC-V registers
 32 g.p., 32 f.p.

Copyright © 2019, Elsevier Inc. All rights reserved.

D
efining

 C
om

puter A
rchitecture

Register Name Use Saver

x0 zero constant 0 n/a

x1 ra return addr caller

x2 sp stack ptr callee

x3 gp gbl ptr

x4 tp thread ptr

x5-x7 t0-t2 temporaries caller

x8 s0/fp saved/
frame ptr

callee

Register Name Use Saver

x9 s1 saved callee

x10-x17 a0-a7 arguments caller

x18-x27 s2-s11 saved callee

x28-x31 t3-t6 temporaries caller

f0-f7 ft0-ft7 FP temps caller

f8-f9 fs0-fs1 FP saved callee

f10-f17 fa0-fa7 FP
arguments

callee

f18-f27 fs2-fs21 FP saved callee

f28-f31 ft8-ft11 FP temps caller

16

Instruction Set Architecture

 Memory addressing
 RISC-V: byte addressed, aligned accesses faster

 Addressing modes
 RISC-V: Register, immediate, displacement

(base+offset)

 Other examples: autoincrement, indexed, PC-relative

 Types and size of operands
 RISC-V: 8-bit, 32-bit, 64-bit

Copyright © 2019, Elsevier Inc. All rights reserved.

D
efining

 C
om

puter A
rchitecture

17

Instruction Set Architecture

 Operations
 RISC-V: data transfer, arithmetic, logical, control,

floating point

 See Fig. 1.5 in text

 Control flow instructions
 Use content of registers (RISC-V) vs. status bits (x86,

ARMv7, ARMv8)

 Return address in register (RISC-V, ARMv7, ARMv8)
vs. on stack (x86)

 Encoding
 Fixed (RISC-V, ARMv7/v8 except compact instruction

set) vs. variable length (x86)

Copyright © 2019, Elsevier Inc. All rights reserved.

D
efining

 C
om

puter A
rchitecture

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 2

18Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Technology

 The architect must take technology changes into
consideration.

 Technology changes very rapidly, architecture
changes slowly (we are still using x86
compatible systems).

 Usually, the architecture you are designing now,
will be used with “next technology”.

T
rends in Technolo

g
y

19Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Technology
 Integrated circuit technology (Moore’s Law)

 Transistor density: 35%/year – Not any more (The end of Moore’s lay).
 Die size: 10-20%/year
 Integration overall: 40-55%/year

 DRAM capacity: 25-40%/year (slowing)
 8 Gb (2014), 16 Gb (2019), possibly no 32 Gb

 Flash capacity: 50-60%/year
 Roughly doubling every 2 years
 8-10X cheaper/bit than DRAM

 Magnetic disk capacity: recently slowed to 5%/year
 Density increases may no longer be possible, maybe increase from 7 to

9 platters
 8-10X cheaper/bit then Flash
 200-300X cheaper/bit than DRAM

T
rends in Technolo

g
y

20Copyright © 2019, Elsevier Inc. All rights reserved.

Bandwidth and Latency

 Bandwidth or throughput
 Total work done in a given time
 32,000-40,000X improvement for processors
 300-1200X improvement for memory and disks

 Latency or response time
 Time between start and completion of an event
 50-90X improvement for processors
 6-8X improvement for memory and disks

T
rends in Technolog

y

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 3

21Copyright © 2019, Elsevier Inc. All rights reserved.

Bandwidth and Latency

Log-log plot of bandwidth and latency milestones

T
rends in Technolo

g
y

22Copyright © 2019, Elsevier Inc. All rights reserved.

Transistors and Wires

 Feature size
 Minimum size of transistor or wire in x or y

dimension
 10 microns in 1971 to .011 microns in 2017
 Transistor performance scales linearly

 Wire delay does not improve with feature size!

 Integration density scales quadratically

T
rends in Technolo

g
y

23Copyright © 2019, Elsevier Inc. All rights reserved.

Power and Energy

 Problem: Get power in, get power out

 Thermal Design Power (TDP)
 Characterizes sustained power consumption
 Used as target for power supply and cooling system
 Lower than peak power (1.5X higher), higher than

average power consumption

 Clock rate can be reduced dynamically to limit
power consumption

 Energy per task is often a better measurement

T
rends in P

ow
er and E

nerg
y

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 4

24Copyright © 2019, Elsevier Inc. All rights reserved.

Dynamic Energy and Power

 Dynamic energy
 Transistor switch from 0 -> 1 or 1 -> 0
 ½ x Capacitive load x Voltage2

 Dynamic power
 ½ x Capacitive load x Voltage2 x Frequency switched

 Reducing clock rate reduces power, not energy

T
rends in P

ow
er an

d E
nerg

y

25Copyright © 2019, Elsevier Inc. All rights reserved.

Dynamic Energy and Power

 Example:

T
rends in P

ow
er an

d E
nerg

y

26Copyright © 2019, Elsevier Inc. All rights reserved.

Power

 Intel 80386
consumed ~ 2 W

 3.3 GHz Intel
Core i7 consumes
130 W

 Heat must be
dissipated from
1.5 x 1.5 cm chip

 This is the limit of
what can be
cooled by air

T
rends in P

ow
er and E

nerg
y

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 5

27Copyright © 2019, Elsevier Inc. All rights reserved.

Reducing Power

 Techniques for reducing power:
 Do nothing well
 Dynamic Voltage-Frequency Scaling

 Low power state for DRAM, disks
 Overclocking, turning off cores

T
rends in P

ow
er an

d E
nerg

y

28Copyright © 2019, Elsevier Inc. All rights reserved.

Static Power

 Static power consumption
 25-50% of total power
 Currentstatic x Voltage
 Scales with number of transistors
 To reduce: power gating

T
rends in P

ow
er an

d E
nerg

y

29Copyright © 2019, Elsevier Inc. All rights reserved.

Shift in Architecture

 Dark silicon: more silicon (devices) that could be
powered at the same time.

 What to include in your design?
 Domain Specific Architecture: Do one thing really

efficient

T
rends in P

ow
er and E

nerg
y

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 6

30Copyright © 2019, Elsevier Inc. All rights reserved.

Trends in Cost
 Cost driven down by learning curve

 Yield

 DRAM: price closely tracks cost
 Microprocessors: price depends on

volume
 10% less for each doubling of volume

 Effect of “Commoditization”
 Multiple vendors selling “essentially” the same

product in large volume (low end computers).
 Many suppliers compete for components

 Operational Expenses (WSC)

T
rends in C

ost

31Copyright © 2019, Elsevier Inc. All rights reserved.

Integrated Circuit Cost

 Integrated circuit

 Bose-Einstein formula:

 Defects per unit area = 0.016-0.057 defects per square cm (2010)
 N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

T
rends in C

ost

32Copyright © 2019, Elsevier Inc. All rights reserved.

Dependability

 SLA guarantees a certain level of
dependability/availability

 Module reliability
 Mean time to failure (MTTF)
 Mean time to repair (MTTR)
 Mean time between failures (MTBF) = MTTF + MTTR
 Availability = MTTF / MTBF

 Failure rate (FIT)=109/MTTF (failure per
billion hours of operation)

D
ependability

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 7

33Copyright © 2019, Elsevier Inc. All rights reserved.

Cost of Unavailability -- Servers

C
lasses of C

om
puters

Figure 1.3 Costs rounded to nearest $100,000 of an unavailable system are shown by analyzing the cost of
downtime (in terms of immediately lost revenue), assuming three different levels of availability, and that
downtime is distributed uniformly. These data are from Landstrom (2014) and were collected and analyzed
by Contingency Planning Research.

34Copyright © 2019, Elsevier Inc. All rights reserved.

Dependability

 Example
10 disks 1,000,000-hour MTTF

1 ATA controller 500,000-hour MTTF

1 Power supply 200,000-hour MTTF

1 Fan 200,000-hour MTTF

1 ATA cable 1,000,000-hour MTTF

 Assume lifetimes are exponentially
distributed and failures are independent

 Calculate MTTF

D
ependability

35Copyright © 2019, Elsevier Inc. All rights reserved.

Redundancy

 Consider the previous example.
 200,000 MTTF for power supplies
 What is the effect of adding one more power

supply (system fails if both power supplies failed
at the same time).

D
ependability

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 8

36Copyright © 2019, Elsevier Inc. All rights reserved.

Measuring Performance

 Typical performance metrics:
 Response time
 Throughput

 Speedup of X relative to Y
 Execution timeY / Execution timeX

 Execution time
 Wall clock time: includes all system overheads
 CPU time: only computation time

 Benchmarks
 Kernels (e.g. matrix multiply)
 Toy programs (e.g. sorting)
 Synthetic benchmarks (e.g. Dhrystone)
 Benchmark suites (e.g. SPEC06fp, TPC-C)

M
easuring

 P
erform

ance

37Copyright © 2019, Elsevier Inc. All rights reserved.

Reporting

 Many programs, how can we capture performance using a single
number?

P1 P2 P3

Machine-A 10 8 25

Machine-B 12 9 20

Machine-C 8 8 30

 Sum of execution time

 Sum of weighted execution time

 Geometric mean of execution time

M
easuring

 P
erform

ance

38Copyright © 2019, Elsevier Inc. All rights reserved.

Measuring Performance

 Many programs, how can we capture performance using a single
number?

P1 P2 P3

Machine-A 10 8 25

Machine-B 12 9 20

Machine-C 8 8 30

 Sum of execution time

 Sum of weighted execution time

 Geometric mean of execution time

M
easuring

 P
erform

ance

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 9

39Copyright © 2019, Elsevier Inc. All rights reserved.

Measuring Performance

 Many programs, how can we capture performance using a single
number?

P1 P2 P3

Machine-A 10 8 25

Machine-B 12 9 20

Machine-C 8 8 30

 Geometric mean of execution time

M
easuring

 P
erform

ance

40Copyright © 2019, Elsevier Inc. All rights reserved.

Measuring Performance

 Time = TC  CPI  IC

 Must be reproducible

 Complete description of the computer and compiler flags.

 Usually, compared to a standard machine execution time
SPECRatioA = Tref/TA.

 Geometric mean

M
easuring

 P
erform

ance

41Copyright © 2019, Elsevier Inc. All rights reserved.

Measuring Performance

M
easuring

 P
erform

ance

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 10

42Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

 Take Advantage of Parallelism
 e.g. multiple processors, disks, memory banks,

pipelining, multiple functional units

 Principle of Locality
 Reuse of data and instructions

 Focus on the Common Case
 Amdahl’s Law

P
rinciples

43Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

 The Processor Performance Equation

P
rinciples

44Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

P
rinciples

 Different instruction types having different
CPIs

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 11

45Copyright © 2019, Elsevier Inc. All rights reserved.

Principles of Computer Design

P
rinciples

 Different instruction types having different
CPIs

46

Fallacies and Pitfalls

 All exponential laws must come to an end
 Dennard scaling (constant power density)

 Stopped by threshold voltage

 Disk capacity
 30-100% per year to 5% per year

 Moore’s Law
 Most visible with DRAM capacity

 ITRS disbanded

 Only four foundries left producing state-of-the-art
logic chips

 11 nm, 3 nm might be the limit

Copyright © 2019, Elsevier Inc. All rights reserved.

47

Fallacies and Pitfalls

 Microprocessors are a silver bullet
 Performance is now a programmer’s burden

 Falling prey to Amdahl’s Law

 A single point of failure

 Hardware enhancements that increase
performance also improve energy
efficiency, or are at worst energy neutral

 Benchmarks remain valid indefinitely
 Compiler optimizations target benchmarks

Copyright © 2019, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 10 September 2018

Chapter 2 — Instructions: Language of the Computer 12

48

Fallacies and Pitfalls

 The rated mean time to failure of disks is
1,200,000 hours or almost 140 years, so
disks practically never fail
 MTTF value from manufacturers assume

regular replacement

 Peak performance tracks observed
performance

 Fault detection can lower availability
 Not all operations are needed for correct

execution

Copyright © 2019, Elsevier Inc. All rights reserved.

