Graphs – ADTs and Implementations

Applications of Graphs

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - ☐ Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - ☐ Entity-relationship diagram

Outline

- Definitions
- Graph ADT
- > Implementations

Outline

- **Definitions**
- Graph ADT
- > Implementations

Edge Types

- Directed edge
 - \square ordered pair of vertices (u,v)
 - \Box first vertex u is the origin
 - \square second vertex v is the destination
 - □ e.g., a flight
- Undirected edge
 - \square unordered pair of vertices (u,v)
 - □ e.g., a flight route
- Directed graph (Digraph)
 - all the edges are directed
 - □ e.g., route network
- Undirected graph
 - all the edges are undirected
 - □ e.g., flight network

Vertices and Edges

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - ☐ a, d, and b are incident on V
- Adjacent vertices
 - ☐ U and V are adjacent
- Degree of a vertex
 - ☐ X has degree 5
- Parallel edges
 - ☐ h and i are parallel edges
- Self-loop
 - ☐ j is a self-loop

Graphs

- \triangleright A graph is a pair (V, E), where
 - \square V is a set of nodes, called vertices
 - \square *E* is a collection of pairs of vertices, called edges
 - ☐ Vertices and edges are positions and store elements
- > Example:
 - ☐ A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

Paths

- Path
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints
- Simple path
 - path such that all its vertices and edges are distinct
- Examples
 - \square P₁=(V,b,X,h,Z) is a simple path
 - \square P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Cycles

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices and edges are distinct
- Examples
 - \Box C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - \square C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple

Subgraphs

- A subgraph S of a graphG is a graph such that
 - □ The vertices of S are a subset of the vertices of G
 - ☐ The edges of S are a subset of the edges of G
- A spanning subgraph of
 G is a subgraph that
 contains all the vertices of
 G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Non connected graph with two connected components

Trees

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Spanning Trees

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Reachability in Directed Graphs

- ➤ A node w is **reachable** from v if there is a directed path originating at v and terminating at w.
 - ☐ E is reachable from B
 - ☐ B is not reachable from E

Properties

Property 1

$$\sum_{\mathbf{v}} \deg(\mathbf{v}) = 2|\mathbf{E}|$$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$|E| \le |V| (|V| - 1)/2$$

Proof: each vertex has degree at most (|V| - 1)

Q: What is the bound for a digraph?

$$A: |E| \leq |V|(|V|-1)$$

Notation

|V|

number of vertices

 $|\boldsymbol{E}|$

number of edges

deg(v)

degree of vertex v

■
$$|E| = 6$$

$$\bullet \quad \deg(\mathbf{v}) = 3$$

Outline

- Definitions
- **➤** Graph ADT
- > Implementations

Main Methods of the (Undirected) Graph ADT

Vertices and edges Update methods ☐ are positions ☐ insertVertex(o): insert a vertex storing element o □ store elements ☐ insertEdge(v, w, o): insert an Accessor methods edge (v,w) storing element o □ endVertices(e): an array of the □ removeVertex(v): remove vertex two endvertices of e v (and its incident edges) □ opposite(v, e): the vertex □ removeEdge(e): remove edge e opposite to v on e Iterator methods ☐ areAdjacent(v, w): true iff v and w are adjacent ☐ incidentEdges(v): edges incident to v ☐ replace(v, x): replace element at vertex v with x vertices(): all vertices in the graph □ replace(e, x): replace element at edge e with x deduction edges(): all edges in the graph

Directed Graph ADT

- Additional methods:
 - □ isDirected(e): return true if e is a directed edge
 - □ insertDirectedEdge(v, w, o): insert and return a new directed edge with origin v and destination w, storing element o

Outline

- Definitions
- Graph ADT
- > Implementations

Running Time of Graph Algorithms

Running time often a function of both |V| and |E|.

For convenience, we sometimes drop the | ... | in asymptotic notation, e.g. O(V+E).

Implementing a Graph (Simplified)

	1	_	3		5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	1 0 1 0	1	0

Adjacency List

Adjacency Matrix

Space complexity:

$$\theta(V+E)$$

$$\theta(V^2)$$

Time to find all neighbours of vertex u: $\theta(\text{degree}(u))$

 $\theta(V)$

Time to determine if $(u, v) \in E$:

 $\theta(\text{degree}(u))$

 $\theta(1)$

Representing Graphs (Details)

- > Three basic methods
 - ☐ Edge List
 - □ Adjacency List
 - □ Adjacency Matrix

Edge List Structure

- Vertex object
 - □ element
 - ☐ reference to position in vertex sequence
- Edge object
 - element
 - □ origin vertex object
 - ☐ destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - ☐ references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - ☐ Integer key (index) associated with vertex
- 2D-array adjacency array
 - □ Reference to edge object for adjacent vertices
 - Null for nonnonadjacent vertices

Asymptotic Performance (assuming collections V and E represented as doubly-linked lists)

 IV vertices, E edges no parallel edges no self-loops Bounds are "big-Oh" 	Edge List	Adjacency List	Adjacency Matrix
Space	V + E	V + $ E $	$ V ^2$
incidentEdges(v)	E	deg(v)	V
areAdjacent (v, w)	E	$\min(\deg(v), \deg(w))$	1
insertVertex(o)	1	1	$ V ^2$
insertEdge(v, w, o)	1	1	1
removeVertex(v)	E	deg(v)	$ V ^2$
removeEdge(e)	1	1	1

Outline

- Definitions
- Graph ADT
- > Implementations