Graphs - ADTs and Implementations

Applications of Graphs

- Electronic circuits
- Printed circuit board
\square Integrated circuit
> Transportation networks
- Highway network
\square Flight network
> Computer networks
\square Local area network
\square Internet
\square Web
> Databases

Outline

$>$ Definitions
> Graph ADT
> Implementations

Outline

$>$ Definitions
$>$ Graph ADT
> Implementations

Edge Types

$>$ Directed edge
\square ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
\square first vertex \boldsymbol{u} is the origin
\square second vertex v is the destination
\square e.g., a flight

> Undirected edge
\square unordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$ 849
\square e.g., a flight route
> Directed graph (Digraph)
\square all the edges are directed
\square e.g., route network
> Undirected graph
\square all the edges are undirected
\square e.g., flight network

Vertices and Edges

$>$ End vertices (or endpoints) of an edge
$\square U$ and V are the endpoints of a
> Edges incident on a vertex
$\square a, d$, and b are incident on V
> Adjacent vertices
$\square U$ and V are adjacent
$>$ Degree of a vertex
$\square X$ has degree 5
> Parallel edges
$\square \mathrm{h}$ and i are parallel edges
> Self-loop

$\square \mathrm{j}$ is a self-loop

Graphs

$>$ A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
$\square V$ is a set of nodes, called vertices
$\square E$ is a collection of pairs of vertices, called edges
\square Vertices and edges are positions and store elements
> Example:
\square A vertex represents an airport and stores the three-letter airport code
\square An edge represents a flight route between two airports and stores the mileage of the route

Paths

> Path
\square sequence of alternating vertices and edgesbegins with a vertex
\square ends with a vertex
\square each edge is preceded and followed by its endpoints
> Simple path
\square path such that all its vertices and edges are distinct
> Examples
$\square P_{1}=(V, b, X, h, Z)$ is a simple path
$\square P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is
 a path that is not simple

Cycles

> Cycle
\square circular sequence of alternating vertices and edges
\square each edge is preceded and followed by its endpoints
> Simple cycle
\square cycle such that all its vertices and edges are distinct
> Examples
C $C_{1}=(V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle

- $\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}, \mathrm{U})$
 is a cycle that is not simple

Subgraphs

\Rightarrow A subgraph S of a graph G is a graph such that
\square The vertices of S are a subset of the vertices of G
\square The edges of S are a subset of the edges of G
> A spanning subgraph of G is a subgraph that contains all the vertices of G

> Subgraph

Spanning subgraph

Connectivity

$>$ A graph is connected if there is a path between every pair of vertices
$>$ A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees

A tree is a connected, acyclic, undirected graph.
A forest is a set of trees (not necessarily connected)

Spanning Trees

> A spanning tree of a connected graph is a spanning subgraph that is a tree
> A spanning tree is not unique unless the graph is a tree
> Spanning trees have applications to the design of communication networks

Graph
> A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Reachability in Directed Graphs

$>$ A node w is reachable from v if there is a directed path originating at v and terminating at w .
$\square E$ is reachable from B
$\square B$ is not reachable from E

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2|\boldsymbol{E}|$
Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges
$|\boldsymbol{E}| \leq|\boldsymbol{V}|(|\boldsymbol{V}|-1) / 2$
Proof: each vertex has degree at most $(|\boldsymbol{V}|-1)$

Q: What is the bound for a digraph?
$A:|E| \leq|V|(V \mid-1)$

Notation

| $\boldsymbol{V} \mid$ number of vertices
$|\boldsymbol{E}| \quad$ number of edges $\operatorname{deg}(\boldsymbol{v})$ degree of vertex \boldsymbol{v}

Example

- $|\boldsymbol{V}|=4$
- $|\boldsymbol{E}|=6$
- $\operatorname{deg}(\boldsymbol{v})=3$

Outline

$>$ Definitions
> Graph ADT
> Implementations

Main Methods of the (Undirected) Graph ADT

> Vertices and edges
\square are positions
\square store elements
> Accessor methods
\square endVertices(e): an array of the two endvertices of e
\square opposite(v, e): the vertex opposite to von e
\square areAdjacent(v, w): true iff v and w are adjacent
\square replace(v, x): replace element at vertex v with x
\square replace (e, x) : replace element at edge e with x
> Update methods
\square insertVertex(o): insert a vertex storing element o
\square insertEdge(v, w, o): insert an edge (v, w) storing element o
\square removeVertex(v): remove vertex v (and its incident edges)
\square removeEdge(e): remove edge e
> Iterator methods
\square incidentEdges(v): edges incident to V
\square vertices(): all vertices in the graph
\square edges(): all edges in the graph

Directed Graph ADT

> Additional methods:
\square isDirected(e): return true if e is a directed edge
\square insertDirectedEdge(v, w, o): insert and return a new directed edge with origin v and destination w, storing element o

Outline

$>$ Definitions
$>$ Graph ADT
> Implementations

Running Time of Graph Algorithms

$>$ Running time often a function of both $|\mathrm{V}|$ and $|\mathrm{E}|$.
$>$ For convenience, we sometimes drop the $|\ldots|$ in asymptotic notation, e.g. $O(V+E)$.

Implementing a Graph (Simplified)

Adjacency List

	1	2	3	4	5
	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency Matrix

Space complexity:
$\theta(V+E)$
$\theta\left(V^{2}\right)$
Time to find all neighbours of vertex $u: \theta($ degree $(u))$
$\theta(V)$
Time to determine if $(u, v) \in E: \quad \theta($ degree $(u))$ $\theta(1)$

Representing Graphs (Details)

$>$ Three basic methods
\square Edge List
\square Adjacency List
\square Adjacency Matrix

Edge List Structure

> Vertex object
\square element
\square reference to position in vertex sequence
$>$ Edge object
\square element
\square origin vertex object
\square destination vertex object
\square reference to position in edge sequence
$>$ Vertex sequence
\square sequence of vertex objects
$>$ Edge sequence
\square sequence of edge objects

Adjacency List Structure

$>$ Edge list structure
> Incidence sequence for each vertex
\square sequence of references to edge objects of incident edges
$>$ Augmented edge objects
\square references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure

$>$ Edge list structure
$>$ Augmented vertex objects
Integer key (index) associated with vertex
> 2D-array adjacency array
\square Reference to edge object for adjacent vertices
Null for nonnonadjacent vertices

Asymptotic Performance

(assuming collections V and E represented as doubly-linked lists)

$\mid \boldsymbol{V}$ vertices, $\|\boldsymbol{E}\|$ edges no parallel edges no no self-loops Bounds are "ig-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\|\boldsymbol{V}+\|\boldsymbol{E}\|$	$\|\boldsymbol{V}+\|\boldsymbol{E}\|$	$\mid \boldsymbol{V} \boldsymbol{V}^{2}$
incidentEdges (\boldsymbol{v})	$\|\boldsymbol{E}\|$	$\operatorname{deg}(\boldsymbol{v})$	$\|\boldsymbol{V}\|$
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	$\|\boldsymbol{E}\|$	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{v})	1	1	$\mid \boldsymbol{V} \boldsymbol{V}^{2}$
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	$\|\boldsymbol{E}\|$	$\operatorname{deg}(\boldsymbol{v})$	$\mid \boldsymbol{V} \boldsymbol{V}^{2}$
removeEdge (\boldsymbol{e})	1	1	1

Outline

$>$ Definitions
> Graph ADT
> Implementations

