Graphs — Breadth First Search

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
» Unweighted Shortest Path: Proof of Correctness

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
» Unweighted Shortest Path: Proof of Correctness

Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G
O Determines whether G is connected
O Computes the connected components of G

O Computes a spanning forest of G
» BFS on a graph with |V| vertices and |E| edges takes O(|V|+|E|) time

» BFS can be further extended to solve other graph problems
O Cycle detection

d Find and report a path with the minimum number of edges between two
given vertices

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u eV[G]
colorfu] <~ BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q= I
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour|[v] « RED
Q.enqueue(v)
colour[u] « GRAY

BFS is a Level-Order Traversal

» Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

» We can label these successive wavefronts by their
distance: L, Ly, ...

BFS Example

undiscovered

A
e discovered (on Queue)
O

finished

unexplored edge
——— discovery edge

— — —p» Cross edge

BFS Example (cont.)

BFS Example (cont.)

Properties

Notation
G,: connected component of s
Property 1
BFS(G, s) visits all the vertices and
edges of G
Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree T, of
GS
Property 3
For each vertex v in L,

d The path of T fromstovhas i
edges

d Every path from sto vin G, has at
least i edges

Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
O once as BLACK (undiscovered)

O once as RED (discovered, on queue)
0 once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex is placed on the queue once

» Thus BFS runs in O(|V|+|E|) time provided the graph is
represented by an adjacency list structure

Applications

» BFS traversal can be specialized to solve the
following problems in O(|V|+|E|) time:

dCompute the connected components of G
dCompute a spanning forest of G
Find a simple cycle in G, or report that G is a forest

[Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

Outline

» BFS Algorithm

» BFS Application: Shortest Path on an unweighted
graph

» Unweighted Shortest Path: Proof of Correctness

Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.

O The length of each path and the paths themselves are returned.

> Notes:

O There are an exponential number of possible paths
O Analogous to level order traversal for trees

O This problem is harder for general graphs than trees because of
cycles!

Breadth-First Search

Input: Graph &6 =(V ,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance 5(s,v) froms tov, Vv eV.
z[lv]=u such that (u,v) is last edge on a shortest path from s to v.

» ldea: send out search ‘wave’ from s.

» Keep track of progress by colouring vertices:
 Undiscovered vertices are coloured black
4 Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.

BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance o[u] and
z[u] = predecessor of u on shortest path from s to each vertex u in G
for each vertex u eV[G]
dlu]« o
z[u] < null
color[u] = BLACK //initialize vertex
colour[s] « RED
d[s]« 0
Q.enqueue(s)
while Q = &
u <« Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] «~ RED
dv] <« d[u]+1
z[v]<u
Q.enqueue(v)
colour[u] « GRAY

BFS

First-In First-Out (FIFO) queue Found
stores ‘just discovered’ vertices Not Handled
Queue
D
—>@C
g
C
J
1
h
m

Found
Not Handled
Queue

BFS Found

Not Handled
Queue
/

S 0Q A ®

BFS Found

Not Handled
Queue
/

S 0Q A ®

BFS Found

Not Handled
s Queue

= O|C 0Q Q.

Found
d=0 Not Handled
Queue

d=1

© 5 0| 09
T
)

Found
d=0 Not Handled
Queue

d=1

o
— 0o 3B ol

Found
Not Handled
Queue

d=1

Found
Not Handled
Queue

d=2

C
f
m
e
J

Found
d=0 Not Handled
v d=1 Queue
9
d=2
' 4c £
m
©
J
h| d=3
1

Found
Not Handled
Queue

d=2

= . O B

d=3

Found
Not Handled
Queue

d=2

= . O

d=3

Found
Not Handled
Queue

d=2

Found
Not Handled
Queue

d=2

Found
Not Handled
Queue

h| d=3
1
1

Found
Not Handled
Queue

d=3

k| d=4

Found
Not Handled
Queue

d=3

k| d=4

Found
Not Handled
Queue

d=3

k| d=4

Found
Not Handled
Queue

k| d=4

Found
Not Handled
Queue

d=4
d=5

Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance o[u] and
z[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u eV[G]

d[u] <« _

2u] < null » Qis a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex ass|gned finite d
colour[s] « RED value at most once.
d[s]« 0
Q.enqueue(s) » Q contains vertices with d
while Q = & values i, ..., I, i1+1, ..., i+1}

u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] «- RED
d[v] « d[u]+1
z[v]<«u
Q.enqueue(v)
colour[u] <~ GRAY

» d values assigned are
monotonically increasing over
time.

Breadth-First-Search is Greedy

» Vertices are handled (and finished):
O in order of their discovery (FIFO queue)

J Smallest d values first

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
» Unweighted Shortest Path: Proof of Correctness

Correctness

Basic Steps:

S\d/\V‘V

The shortest path to u & there 1s an edge
has length d fromutov

There 1s a path to v with length d+1.

Correctness: Basic Intuition

» \When we discover v, how do we know there is not a
shorter path to v?

] Because if there was, we would already have discovered it!

S\d/\VQV

Correctness: More Complete Explanation

> Vertices are discovered in order of their distance from
the source vertex s.

» Suppose that at time t; we have discovered the set V, of
all vertices that are a distance of d from s.

» Each vertex in the set V,,, of all vertices a distance of
d+1 from s must be adjacent to a vertex in V,

» Thus we can correctly label these vertices by visiting all
vertices in the adjacency lists of vertices in V.

S\d/\VﬁV

Inductive Proof of BFS

Suppose at step i that the set of nodes S. with distance o(v) <d. have been
discovered and their distance values d[v] have been correctly assigned.

Further suppose that the queue contains only nodes in S, with d values of d..

Any node v with 6(v)=d. +1must be adjacentto S..

Any node v adjacent to S, but notin S, must have 6(v)=d. +1.

At step i +1, all nodes on the queue with d values of d. are dequeued and processed.

In so doing, all nodes adjacent to S, are discovered and assigned d values of d. +1.

Thus after step i +1, all nodes v with distance 5(v) <d. +1have been discovered
and their distance values d[v] have been correctly assigned.

Furthermore, the queue contains only nodes in S, with d values of d. +1.

Correctness: Formal Proof

Input: Graph & =(V ,E) (directed or undirected) and source vertex s V.

Output:
d[v]= distance &6(v) froms tov, Vv €V.
7[v] = u such that (u,v) is last edge on shortest path from s to v.

Two-step proof:

On exit:
1.d[v]>o6(s,v)Vv eV

2.d[v] # o(s,v)VVv eV

Claim 1. d is never too small: d[v] > o(s,v)VVv eV
Proof: There exists a path from s to v of length <d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).

v is discovered from some adjacent vertex u being handled.

— d[v]=d[u]+1 ;
> 0(s,u)+1 v
> 0(S,V) u

since each vertex v is assigned a d value exactly once,

it follows that on exit, d[v] > o6(s,v)vVv e V.

Claim 1. d is never too small: d[v] > od(s,v)VVv eV
BFS(G.s) Proof: There exists a path from s to v of length <d[v].

Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance o[u] and
z[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u eV[G]
d[u] «
z[u] < null S

color[u] = BLACK //initialize vertex V
colour[s] « RED u

d[s]« 0
Q.enqueue(s)
while Q= & «— : d[v]> &(s,v)V 'discovered' (red or grey) v eV
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colourfv] < RED
Cdvledul+1_>>5(s,u)+1 > 5(s,v)
z[v]<«u
Q.enqueue(v)
colour[u] <~ GRAY

Claim 2. d is never too big: d[v]<d(s,v)VVv eV

Proof by contradiction:
Suppose one or more vertices receive a d value greater than 6.
Let v be the vertex with minimum &(s,v) that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be v's predecessor on a shortest path from s to v.

Th _ B
o S(s,v)<d[v] dix]=dlv]—1
— S5(s,v)-1<d[v]-1 g
— d[u] <d[X] \%

d[u]=o(s,v) -1

Recall: vertices are dequeued in increasing order of d value.

— u was dequeued before x.

—d[v]=d[u]+1=4(s,v) Contradiction!

Correctness

Claim 1. d is never too small: d[v]>od(s,v)Vv eV

Claim 2. d is never too big: d[v]<o(s,v)Vv eV

= d is just right: d[v]=0(s,v)VVv eV

Progress? > On every iteration one vertex is processed (turns gray). —

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance o[u] and
z[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u eV[G]
d[u] «
z[u] < null
colorfu] = BLACK //initialize vertex
colour[s] « RED
d[s]« 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] «- RED
d[v] « d[u]+1
z[v]<«u
Q.enqueue(v)
colour[u] <~ GRAY <

Optimal Substructure Property

» The shortest path problem has the optimal substructure property:

O Every subpath of a shortest path is a shortest path.

shortest path
A

~ —~
How would we Vv
prove this? S U

N\ N _J

' v
shortest path shortest path

» The optimal substructure property
O is a hallmark of both greedy and dynamic programming algorithms.

U allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.

Recovering the Shortest Path

For each node v, store predecessor of v in LI(v).

S = T(T(T(7T(v))))

T(T(T(V)))
(T V))

Predecessor of v is LI(v) = u. R(V)

Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph &6
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v=s5 then

prin s s = TT(T(T(v))))
else if z[v]=NIL then

print "no path from" s "to" v "exists"

else
PRINT-PATH(G, s, =[v])
print v

T(r(m(v)))
(m(v))

(V)

BFS Algorithm without Colours
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: predecessors z[u] and shortest
distance d[u] from s to each vertex u in G has been computed
for each vertex u eV[G]
d[u] <
z[u] < null
d[s]« O
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
<f d[v] = o
dv] <« d[u]+1
zv] <« u
Q.enqueue(V)

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
» Unweighted Shortest Path: Proof of Correctness

