## Graphs - Shortest Path (Weighted Graph)



## Outline

> The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

## Outline

$\Rightarrow$ The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

## Shortest Path on Weighted Graphs

>BFS finds the shortest paths from a source node $\mathbf{s}$ to every vertex v in the graph.
> Here, the length of a path is simply the number of edges on the path.
$>$ But what if edges have different 'costs'?


## Weighted Graphs

> In a weighted graph, each edge has an associated numerical value, called the weight of the edge
$>$ Edge weights may represent, distances, costs, etc.
> Example:
In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports


## Shortest Path on a Weighted Graph

$>$ Given a weighted graph and two vertices $u$ and $v$, we want to find a path of minimum total weight between $u$ and $v$.
$\square$ Length of a path is the sum of the weights of its edges.
> Example:
Shortest path between Providence and Honolulu
> Applications

- Internet packet routing
$\square$ Flight reservations



## Shortest Path: Notation

$>$ Input:
Directed Graph $G=(V, E)$
Edge weights $w: E \rightarrow \mathbf{N}$
Weight of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$
Shortest-path weight from $u$ to $v$ :
$\delta(u, v)= \begin{cases}\min \{w(p): u \rightarrow \cdots \rightarrow v\} & \text { if } \exists \text { a path } u \rightarrow \cdots \rightarrow v, \\ \infty & \text { otherwise. }\end{cases}$
Shortest path from $u$ to $v$ is any path $p$ such that $w(p)=\delta(u, v)$.

## Shortest Path Properties

Property 1 (Optimal Substructure):
A subpath of a shortest path is itself a shortest path
Property 2 (Shortest Path Tree):
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence


Shortest path trees are not necessarily unique

(a)

(b)

(c)

Single-source shortest path search induces a search tree rooted at $s$.
This tree, and hence the paths themselves, are not necessarily unique.

## Optimal substructure: Proof

$>$ Lemma: Any subpath of a shortest path is a shortest path
> Proof: Cut and paste.
Suppose this path $p$ is a shortest path from $u$ to $v$.


Then $\delta(u, v)=w(p)=w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right)$. $p_{x y}^{\prime}$
Now suppose there exists a shorter path $x \rightarrow \cdots \rightarrow y$.
Then $w\left(p_{x y}^{\prime}\right)<w\left(p_{x y}\right)$.
Construct $p^{\prime}$ :


Then $w\left(p^{\prime}\right)=w\left(p_{u x}\right)+w\left(p_{x y}^{\prime}\right)+w\left(p_{y v}\right)<w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right)=w(p)$.
So p wasn' $\dagger$ a shortest path after all!

## Shortest path variants

$>$ Single-source shortest-paths problem: - the shortest path from $s$ to each vertex $v$.
$>$ Single-destination shortest-paths problem: Find a shortest path to a given destination vertex $t$ from each vertex $v$.
$>$ Single-pair shortest-path problem: Find a shortest path from $u$ to $v$ for given vertices $u$ and $v$.
$>$ All-pairs shortest-paths problem: Find a shortest path from $u$ to $v$ for every pair of vertices $u$ and $v$.

## Negative-weight edges

$>$ OK, as long as no negative-weight cycles are reachable from the source.
$\square$ If we have a negative-weight cycle, we can just keep going around it, and get $w(s, v)=-\infty$ for all $v$ on the cycle.
$\square$ But OK if the negative-weight cycle is not reachable from the source.
$\square$ Some algorithms work only if there are no negative-weight edges in the graph.


## Cycles

$>$ Shortest paths can't contain cycles:
$\square$ Already ruled out negative-weight cycles.
$\square$ Positive-weight: we can get a shorter path by omitting the cycle.
$\square$ Zero-weight: no reason to use them $\rightarrow$ assume that our solutions won't use them.

## Outline

> The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

## Output of a single-source shortest-path algorithm

$>$ For each vertex v in V :
$\square \mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$.
$\diamond$ Initially, $\mathrm{d}[\mathrm{v}]=\infty$.
$\diamond$ Reduce as algorithm progresses.
But always maintain $\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})$.
$\diamond$ Call d[v] a shortest-path estimate.
$\square \pi[\mathrm{v}]=$ predecessor of v on a shortest path from s.
$\diamond$ If no predecessor, $\pi[\mathrm{v}]=$ NIL.
$\diamond \pi$ induces a tree - shortest-path tree.

## Initialization

$>$ All shortest-path algorithms start with the same initialization:

INIT-SINGLE-SOURCE(V, s)
for each $v$ in $V$
do $\mathrm{d}[\mathrm{V}] \leftarrow \infty$
$\pi[\mathrm{v}] \leftarrow \mathrm{NIL}$
$\mathrm{d}[\mathrm{s}] \leftarrow 0$

## Relaxing an edge

$>$ Can we improve shortest-path estimate for $v$ by first going to $u$ and then following edge ( $u, v$ )?
$\operatorname{RELAX}(u, v, w)$
if $d[v]>d[u]+w(u, v)$ then

$$
\mathrm{d}[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})
$$

$$
\pi[v] \leftarrow \mathrm{u}
$$



# General single-source shortest-path strategy 

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are taken and how many times each edge is relaxed.

## Outline

$>$ The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

## Example 1. Single-Source Shortest Path on a Directed Acyclic Graph

> Basic Idea: topologically sort nodes and relax in linear order.
$>$ Efficient, since $\delta[u]$ (shortest distance to $u$ ) has already been computed when edge ( $u, v$ ) is relaxed.
$>$ Thus we only relax each edge once, and never have to backtrack.

## Example: Single-source shortest paths in a directed acyclic graph (DAG)

$>$ Since graph is a DAG, we are guaranteed no negative-weight cycles.
> Thus algorithm can handle negative edges

(a)

## Algorithm

DaG-Shortest-Paths ( $G, w, s$ )
1 topologically sort the vertices of $G$
2 Initialize-Single-Source $(G, s)$
3 for each vertex $u$, taken in topologically sorted order
4 do for each vertex $v \in \operatorname{Adj}[u]$
5 do $\operatorname{ReLax}(u, v, w)$

Time: $\Theta(V+E)$

## Example


(b)

## Example



## Example


(d)

## Example



## Example


(f)

## Example



## Correctness: Path relaxation property

Let $p=<v_{0}, v_{1}, \ldots, v_{k}>$ be a shortest path from $s=v_{0}$ to $v_{k}$.
If we relax, in order, $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$,
even intermixed with other relaxations,
then $d\left[v_{k}\right]=\delta\left(s, v_{k}\right)$.

## Correctness of DAG Shortest Path Algorithm

$>$ Because we process vertices in topologically sorted order, edges of any path are relaxed in order of appearance in the path.
$\square \rightarrow$ Edges on any shortest path are relaxed in order.
$\square \rightarrow$ By path-relaxation property, correct.

## Outline

$>$ The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

## Example 2. Single-Source Shortest Path on a General Graph (May Contain Cycles)

$>$ This is fundamentally harder, because the first paths we discover may not be the shortest (not monotonic).

## Dijkstra's algorithm (E. Dijkstra,1959)

> Applies to general, weighted, directed or undirected graph (may contain cycles).
$>$ But weights must be non-negative. (But they can be 0!)
$>$ Essentially a weighted version of BFS.
$\square$ Instead of a FIFO queue, uses a priority queue.
$\square$ Keys are shortest-path weights (d[v]).
$>$ Maintain 2 sets of vertices:
$\square S=$ vertices whose final shortest-path weights are determined.

$\square Q=$ priority queue $=V-S$.
Edsger Dijkstra

## Dijkstra's Algorithm: Operation

$>$ We grow a "cloud" $S$ of vertices, beginning with $s$ and eventually covering all the vertices
$>$ We store with each vertex $v$ a label $d(v)$ representing the distance of $v$ from $s$ in the subgraph consisting of the cloud $S$ and its adjacent vertices
$>$ At each step
$\square$ We add to the cloud $S$ the vertex $\boldsymbol{u}$ outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
We update the labels of the vertices adjacent to $\boldsymbol{u}$


## Dijkstra's algorithm

```
DIJKSTRA(G,w,s)
1 Initialize-Single-Source( }G,s
2 S}\leftarrow
3 Q}\leftarrowV[G
4 \text { while } Q \neq \emptyset
5 do }u\leftarrow\mathrm{ EXtrAct-Min(Q)
6 S}\leftarrowS\cup{u
7 for each vertex v}\in\operatorname{Adj}[u
do Relax (u,v,w)
```

- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" vertex in V-S to add to S.


## Dijkstra's algorithm: Analysis

- Analysis:
- Using minheap, queue operations takes $O(\log V)$ time

```
DiJkstra \((G, w, s)\)
1 Initialize-Single-Source \((G, s) O(V)\)
\(2 S \leftarrow \emptyset\)
\(3 \quad Q \leftarrow V[G]\)
4 while \(Q \neq \emptyset\)
\(5 \quad\) do \(u \leftarrow\) EXTRACT-Min \((Q) \quad O(\log V) \times O(V)\) iterations
\(6 \quad S \leftarrow S \cup\{u\}\)
7 for each vertex \(v \in \operatorname{Adj}[u]\)
\(8 \quad\) do \(\operatorname{Relax}(u, v, w) \quad O(\log V) \times O(E)\) iterations
    \(\rightarrow\) Running Time is \(O(E \log V)\)
```


## Example Key: White $\Leftrightarrow$ Vertex $\in Q=V-S$

## Grey $\Leftrightarrow$ Vertex $=\min (Q)$

## Black $\Leftrightarrow$ Vertex $\in S$, Off Queue


(a)

## Example



## Example



## Example



## Example


(e)

## Example



## Djikstra's Algorithm Cannot Handle Negative Edges



## Correctness of Dijkstra's algorithm

```
Dijkstra \((G, w, s)\)
1 Initialize-Single-Source \((G, s)\)
\(2 S \leftarrow \emptyset\)
\(3 Q \leftarrow V[G]\)
4 while \(Q \neq \emptyset\)
\(5 \longrightarrow\) do \(u \leftarrow\) Extract-Min \((Q)\)
\(S \leftarrow S \cup\{u\}\)
7 for each vertex \(v \in \operatorname{Adj}[u]\)
8 do \(\operatorname{Relax}(u, v, w)\)
Loop invariant: \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all v in S .
```

$\square$ Initialization: Initially, $S$ is empty, so trivially true.
$\square$ Termination: At end, Q is empty $\rightarrow \mathrm{S}=\mathrm{V} \rightarrow \mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ for all v in V .
$\square$ Maintenance:
$\triangleleft$ Need to show that

* $\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$ when u is added to S in each iteration.
* $d[u]$ does not change once $u$ is added to $S$.


## Correctness of Dijkstra's Algorithm: Upper Bound Property

> Upper Bound Property:

1. $d[v] \geq \delta(s, v) \forall v \in V$
2. Once $d[v]=\delta(s, v)$, it doesn't change

- Proof:

By induction.
Base Case: $d[v] \geq \delta(s, v) \forall v \in V$ immediately after initialization, since $d[s]=0=\delta(s, s)$
$d[v]=\infty \forall v \neq s$
Inductive Step:
Suppose $d[x] \geq \delta(s, x) \forall x \in V$
Suppose we relax edge ( $u, v$ ).
If $d[v]$ changes, then $d[v]=d[u]+w(u, v)$


## Correctness of Dijkstra's Algorithm

Claim: When $u$ is added to $S, d[u]=\delta(s, u)$
Proof by Contradiction: Let $u$ be the first vertex added to $S$
such that $d[u] \neq \delta(s, u)$ when $u$ is added.
Let $y$ be first vertex in $V-S$ on shortest path to $u$
Let $x$ be the predecessor of $y$ on the shortest path to $u$
Claim: $d[y]=\delta(s, y)$ when $u$ is added to $S$.
Proof:
$d[x]=\delta(s, x)$, since $x \in S$.

Optimal substructure property!
$(x, y)$ was relaxed when $x$ was added to $S \rightarrow d[y]=\delta(s, x)+w(x, y)=\delta(s, y)$


## Correctness of Dijkstra's Algorithm

Thus $d[y]=\delta(s, y)$ when $u$ is added to $S$.


Consequences:
There is a shortest path to $u$ such that the predecessor of $u \pi[u] \in S$ when $u$ is added to $S$. The path through $y$ can only be a shortest path if $w\left[p_{2}\right]=0$.


## Correctness of Dijkstra's algorithm

```
Dijkstra \((G, w, s)\)
    Initialize-Single-Source \((G, s)\)
    \(S \leftarrow \emptyset\)
    \(Q \leftarrow V[G]\)
    while \(Q \neq \emptyset\)
            do \(u \leftarrow \operatorname{ExTRACT}-\operatorname{Min}(Q)\)
        \(S \leftarrow S \cup\{u\} \quad\) Relax \((u, \mathrm{v}, \mathrm{w})\) can only decrease \(d[v]\).
        for each vertex \(v \in \operatorname{Adj}[u]\)
        \(<-\overline{\operatorname{dog}} \overline{\operatorname{Rectax}}(u, v, w)=\) By the upper bound property, \(d[v] \geq \delta(s, v)\).
                        Thus once \(d[v]=\delta(s, v)\), it will not be changed.
```

> Loop invariant: $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ for all v in S .

- Maintenance:
$\triangleleft$ Need to show that
* $d[u]=\delta(s, u)$ when $u$ is added to $S$ in each iteration.
$\leq \mathrm{d}[\mathrm{u}]$ does not change once u is added to S . $-\infty, ?$


## Outline

> The shortest path problem
$>$ Single-source shortest path
$\square$ Shortest path on a directed acyclic graph (DAG)
$\square$ Shortest path on a general graph: Dijkstra's algorithm

