
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Test-Driven Development
JUnit
EECS 2311 - Software Development Project

Wednesday, January 23, 2019

2

Unit Testing

•  Testing the internals of a class

•  Black box testing
•  Test public methods

•  Classes are tested in isolation
•  One test class for each application class

3

Test – Driven Development

•  TDD is a software development approach
whereby you write your test cases before
you write any implementation code

•  Tests drive or dictate the code that is
developed

•  An indication of “intent”
•  Tests provide a specification of “what” a

piece of code actually does
•  Tests are documentation

4

TDD Stages
1.  Write a single test.

2.  Compile it. It should not compile because you have not
written the implementation code

3.  Implement just enough code to get the test to compile

4.  Run the test and see it fail

5.  Implement just enough code to get the test to pass

6.  Run the test and see it pass

7.  Refactor

8.  Repeat

5

JUnit

•  JUnit is a framework for writing and running
tests
•  Created by Erich Gamma (of Design Patterns fame)

and Kent Beck (creator of XP methodology)
•  Uses Java features such as annotations and static

imports
•  We will discuss Junit 5 (the latest version)
•  Lots of JUnit 4 code out there, JUnit 5 is backwards

compatible
•  Include junit-vintage in your build path to run JUnit 4 code

6

Terminology

•  A test fixture sets up the data (both objects and
primitives) that are needed for every test
•  Example: If you are testing code that updates an

employee record, you need an employee record to
test it on

•  A unit test is a test of a single class

•  A test case tests the response of a single
method to a particular set of inputs

•  A test suite is a collection of test cases

•  A test runner is software that runs tests and
reports results

7

Structure of a JUnit test class

•  To test a class named Fraction

•  Create a test class FractionTest
import org.junit.jupiter.api.*;
import static
org.junit.jupiter.api.Assertions.*;
public class FractionTest
{

…
}

8

Test fixtures

•  Methods annotated with @BeforeEach will
execute before each test case

•  Methods annotated with @AfterEach will
execute after each test case

@BeforeEach
public void setUp() {…}
@AfterEach
public void tearDown() {…}

9

Class Test fixtures

•  Methods annotated with @BeforeAll will
execute once before all test cases

•  Methods annotated with @AfterAll will
execute once after all test cases

•  These are useful if you need to allocate and
release expensive resources once

10

Test cases

•  Methods annotated with @Test are
considered to be test cases

@Test
public void testadd() {…}
@Test
public void testToString() {…}

11

What JUnit does

•  For each test case t:
•  JUnit executes all @BeforeEach methods

•  Their order of execution is not specified
•  JUnit executes t

•  Any exceptions during its execution are
logged

•  JUnit executes all @AfterEach methods
•  Their order of execution is not specified

•  A report for all test cases is presented

12

Within a test case

•  Call the methods of the class being tested

•  Assert what the correct result should be with
one of the provided assert methods

•  These steps can be repeated as many times as
necessary

•  An assert method is a JUnit method that
performs a test, and throws an AssertionError if
the test fails
•  JUnit catches these exceptions and shows you the

results

13

List of assert methods 1

•  assertTrue(boolean b)  
assertTrue(boolean b, String s)
•  Throws an AssertionError if b is False
•  The optional message s is included in the

Error

•  assertFalse(boolean b)  
assertFalse(boolean b, String s)
•  Throws an AssertionError if b is True
•  All assert methods have an optional

message

14

List of assert methods 2

•  assertEquals(Object expected,  
 Object actual)

•  Uses the equals method to compare the two
objects

•  Primitives can be passed as arguments
thanks to autoboxing

•  Casting may be required for primitives

•  There is also a version to compare arrays

15

Example: Counter class

•  Consider a trivial “counter” class

•  The constructor creates a counter and sets it
to zero

•  The increment method adds one to the
counter and returns the new value

•  The decrement method subtracts one from
the counter and returns the new value

•  An example and the corresponding JUnit test
class can be found on the course website

16

List of assert methods 3

•  assertSame(Object expected,  
 Object actual)
•  Asserts that two references are attached

to the same object (using ==)

•  assertNotSame(Object expected,  
 Object actual)
•  Asserts that two references are not

attached to the same object

17

List of assert methods 4

•  assertNull(Object object)  
Asserts that a reference is null

•  assertNotNull(Object object)
Asserts that a reference is not null

•  fail()  
Causes the test to fail and throw an
AssertionError
•  Useful as a result of a complex test, or

when testing for exceptions

18

Parameterized Tests

•  Useful when repeating the same test case
but with different input parameters

@ParameterizedTest
@ValueSource(ints = { 1, 2, 3 })
void testWithValueSource
 (int argument) {
 assertTrue(argument > 0 &&
 argument < 4);
}

19

Testing for exceptions

•  If a test case is expected to raise an
exception, it can be noted as follows

@Test
void testExpectedExceptionFail() {
 assertThrows(
 IllegalArgumentException.class,
 () -> {Integer.parseInt("1");}
);
}

20

Ignoring test cases

•  Test cases that are not finished yet can be
annotated with @Disabled

•  JUnit will not execute the test case but will
report how many test cases are disabled

21

JUnit in Eclipse

•  JUnit can be downloaded from github

•  If you use Eclipse, as in this course, you do
not need to download anything

•  Eclipse contains wizards to help with the
development of test suites with JUnit

•  JUnit results are presented in an Eclipse
window

22

JUnit 4 vs. Junit 5

•  Some annotations have been updated
•  @BeforeClass @BeforeAll
•  @Before @BeforeEach
•  @AfterClass @AfterAll
•  @After @AfterEach
•  @Ignore @Disabled

•  assertThrows was introduced in Junit 5

23

JUnit 5 other new features

•  assertAll() – tests a number of assertions
together

•  assertTimeout() – test that a piece of code
will finish within a particular timeframe

•  Assumptions – Running the test case only if
the assumption holds

•  Many more! See link to documentation on
course website

24

Hello World demo

•  Run Eclipse

•  File -> New -> Project, choose Java Project, and
click Next. Type in a project name, e.g.
ProjectWithJUnit.

•  Click Next

•  Click Create New Source Folder, name it test

•  Click Finish

•  Click Finish

25

Create a class
•  Right-click on ProjectWithJUnit

Select New -> Package
Enter package name, e.g. eecs2311.week3
Click Finish

•  Right-click on eecs2311.week3
Select New -> Class
Enter class name, e.g. HelloWorld
Click Finish

26

Create a class - 2
•  Add a dummy method such as

public String say() { return null; }

•  Right-click in the editor window and select Save

27

Create a test class

•  Right-click on the HelloWorld class
Select New -> JUnit Test Case

•  Change the source folder to test as opposed to
src

•  Check to create a setup method

•  Click Next

28

Create a test class

•  Check the checkbox for the say method
•  This will create a stub for a test case for this method

•  Click Finish

•  Click OK to “Add JUnit 5 library to the build
path”

•  The HelloWorldTest class is created

•  The first version of the test suite is ready

29

Run the test class - 1st try
•  Right click on the HelloWorldTest class

•  Select Run as -> JUnit Test

•  The results appear in the left

•  The automatically created test case fails

30

Create a better test case
•  Declare an attribute of type HelloWorld
HelloWorld hi;

•  The setup method should create a HelloWorld object
hi = new HelloWorld();

•  Modify the testSay method body to
assertEquals("Hello World!", hi.say());

31

Run the test class - 2nd try
•  Save the new version of the test class and re-run

•  This time the test fails due to expected and actual not
being equal

•  The body of the method say has to be modified to
return “Hello World!”;
for the test to pass

32

Create a test suite
•  Right-click on the eecs2311.week3 package in the test

source folder

•  Select New -> Class. Name the class AllTests.

•  Modify the class text so it looks like class AllTests for the
Counter example on the course website (keep the
package declaration)

•  Change CounterTest to HelloWorldTest

•  Run with Run -> Run As -> JUnit Test

•  Add more test classes separated by commas

33

Lab Task
•  Assume the Counter class is modified as follows:

•  A reset method is added to change the counter value to 0.
•  Overloaded versions of increment and decrement are

added. They receive an int as an argument to inc/dec the
counter by that amount

•  Each student must implement and test these methods.
You must have at least 5 test cases.

•  In the lab on Monday, you must present your test cases
to the TA and demonstrate running them

•  You’ll have to demonstrate a first version of the TalkBox
Configuration app as well

