
Breadth first search

Franck van Breugel

February 13, 2019

1 Constructor
Implement the constructor of the BFSearch class.

public class BFSearch extends Search {
/**
* Initialize this search.
*
* @param config JPF’s configuration.
* @param vm JPF’s virtual machine.
*/
public BFSearch(Config config, VM vm) {

}

2 Data structure
Which data structure is usually used to implement breadth first search?

3 Forward and backtrack

1

2

54

3

76

1

For the above state space, provide the content of the queue and the sequence of calls to
forward, backtrack, enqueue and dequeue, and the value returned by the first two, cor-
responding to breadth first search started in the top most state. Assume that initially the queue
contains the top most state.

4 Search
Implement a basic search method using only calls to forward, backtrack, enqueue,
dequeue and isEmpty and loops.

public void search() {

}

5 Restorable states
We introduce the following methods.

/**
* Returns the current state so that it is restorable.
* @return the current state.
*/
private RestorableVMState getRestorableState() {
return this.getVM().getRestorableState();

}

/**
* Restores the given state.
* @param state a state that is restorable.
*/
private void restoreState(RestorableVMState state) {
this.getVM().restoreState(state);

}

2

Implement the search method using a Queue of RestorableVMStates.

public void search() {

}

6 New states

public boolean isNewState()

tests whether the current state has not been visited before.

Modify the search method so that each state is enqueued at most once.

public void search() {

}

7 End states

public boolean isEndState()

tests whether the current state is a final state.

3

Modify the search method so that end states are not enqueued.

public void search() {

}

8 Ignored states

public boolean isIgnoredState()

tests whether the current state can be ignored in the search.

States can, for example, be ignored by using in the system under test the method ignoreIf(boolean)
of JPF’s class Verify which is part of the package gov.nasa.jpf.vm.

Modify the search method so that ignored states are not enqueued.

public void search() {

}

9 Done
Other components of JPF can end a search by setting the attribute done of the class Search to
true.

4

Modify the search method of the BFSearch class to incorporate the done attribute.

public void search() {

}

10 Request backtrack
Other components of JPF can request a search to backtrack by means of the method

public boolean checkAndResetBacktrackRequest()

Modify the BFSearch class so that it does not support backtrack requests.

11 Depth
The Search class contains the attribute depth that can be used to keep track of the depth of the
search. It is initialized to zero.

Modify the search method to keep track of the depth.

5

public void search() {

}

12 Depth limit
JPF can be configured to limit the depth of the search by setting the JPF property search.depth_limit.
The default value of search.depth_limit is Integer.MAX_VALUE. The Search class
provides the method getDepthLimit which returns the maximal allowed depth of the search.

We introduce the following method in the BFSearch class.

private boolean checkDepthLimit() {
return this.depth < this.getDepthLimit();

}

Incorporate checkDepthLimit into search.

public void search() {

}

6

13 Memory usage limit
The JPF property search.min_free captures the minimal amount of memory, in bytes, that
needs to remain free. The default value is 1024 << 10 = 10242 = 1, 048, 576B ≈ 1MB. By leav-
ing some memory free, JPF can report that it ran out of memory and provide some useful statistics
instead of simply throwing an OutOfMemoryError. The method checkStateSpaceLimit
of the class Search checks whether the minimal amount of memory that should be left free is still
available.

Modify the search method of the BFSearch class to limit the memory usage.

public void search() {

}

7

