
Concurrency

Franck van Breugel

March 13, 2018

1 The readers-writers problem
The readers and writers problem, due to Courtois, Heymans and Parnas, is a classical concurrency
problem. It models access to a database. There are many competing threads wishing to read from
and write to the database. It is acceptable to have multiple threads reading at the same time, but if
one thread is writing then no other thread may either read or write. A thread can only write if no
thread is reading.

public class Reader extends Thread {
private Database database;

public Reader(Database database) {
this.database = database;

}

public void run() {
this.database.read();

}
}

public class Writer extends Thread {
private Database database;

public Writer(Database database) {
this.database = database;

}

public void run() {
this.database.write();

}
}

1



public class Database {
...
public Database() { ... }
public void read() { ... }
public void write() { ... }

}

final int READERS = 5;
final int WRITERS = 2;
Database database = new Database();
for (int r = 0; r < READERS; r++) {
(new Reader(database)).start();

}
for (int w = 0; w < WRITERS; w++) {
(new Writer(database)).start();

}

1. If we make both methods synchronized, does that solve the problem?

2. Is it a satisfactory solution? Explain your answer.

3. When does a reader have to wait until it can start reading?

4. When does a writer have to wait until it can start writing?

5. Of which type of information do we need to keep track so that we can determine

• whether a writer is writing, and

• whether a writer is writing or a reader is reading.

6. What are appropriate names for these two attributes?

7.

2



public class Database {
private boolean writing;
private boolean reading;

...
}

Where and how are the attributes writing and reading initialized?

8. In

public void read() {
...
\\ read
...
}

how do we express that a thread has to wait if a writer is writing?

9. The wait method throws an InterruptedException if any thread interrupted the
current thread before or while the current thread was waiting for a notification.

Since an InterruptedException is a checked exception, it needs to be specified or
caught. How do we handle the InterruptedException?

10. When invoking object.wait(), the current thread must own the lock (or monitor) of
object. If that is not the case, a IllegalMonitorStateException is thrown.

How can we ensure that the current thread owns the lock of the database when executing
wait within the read method?

11. Where and how do we modify the value of the attribute writing?

12. In

public void write() {
...

3



\\ write
...
}

how do we express that a thread has to wait if a writer is writing or a reader is reading?

13. Where and how do we modify the value of the attribute reading?

4


