
Search
EECS 4315

www.eecs.yorku.ca/course/4315/

1/49

www.eecs.yorku.ca/course/4315/

Source: weknowyourdreams.com

2/49

Search strategies

JPF contains different search strategies:

depth first search
(gov.nasa.jpf.search.DFSearch),

breadth first search
(gov.nasa.jpf.search.heuristic.BFSHeuristic)

and several other search strategies.

JPF has been designed in such a way that it can easily be extended.
For example, a new search strategy can be added to JPF.

3/49

The Search class

The class Search of the package gov.nasa.jpf.search contains
numerous attributes and methods that are useful for implementing
search strategies.

By extending the Search class, we inherit all these features.

4/49

Depth first search

import gov.nasa.jpf.search.Search;

public class DFSearch extends Search {

...

}

5/49

Constructor of DFSearch

public Search(Config config, VM vm)

The Config object contains the JPF properties.

The VM object refers to JPF’s virtual machine.

Question

Implement the constructor of the DFSearch.

6/49

The search method

The method

public void search()

drives the search.

public boolean forward()

tries to move forward along an unexplored transition and returns
whether the move is successful.

public boolean backtrack()

tries to backtrack and returns whether the backtrack is successful.

7/49

The search method

1

2

43

5

76

Question

For the above state space, provide the sequence of calls to
forward and backward and the value returned by them
corresponding to depth first search started in the top most state.

8/49

The search method

1

2

43

5

76

Answer

forward(true)

9/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true)

10/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false)

11/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true)

12/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true)

13/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false)

14/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true)

15/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true); forward(false)

16/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true); forward(false);
backtrack(true)

17/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true); forward(false);
backtrack(true); forward(true)

18/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true); forward(false);
backtrack(true); forward(true); · · · ; forward(false)

19/49

The search method

1

2

43

5

76

Answer

forward(true); forward(true); forward(false); backtrack(true);
forward(true); forward(false); backtrack(true); forward(false);
backtrack(true); forward(true); · · · ; forward(false);
backtrack(false)

20/49

The search method

Question

Write some code consisting only of calls to forward and backward

and loops that gives rise to the sequence on the previous slide.

Answer

There are many ways to express the sequence including

do {

while (this.forward()) {}

} while (this.backtrack());

21/49

The search method

Question

Write some code consisting only of calls to forward and backward

and loops that gives rise to the sequence on the previous slide.

Answer

There are many ways to express the sequence including

do {

while (this.forward()) {}

} while (this.backtrack());

21/49

States

public boolean isNewState()

tests whether the current state has not been visited before.

Question

Incorporate the isNewState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState()) {}

} while (this.backtrack());

22/49

States

public boolean isNewState()

tests whether the current state has not been visited before.

Question

Incorporate the isNewState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState()) {}

} while (this.backtrack());

22/49

States

public boolean isNewState()

tests whether the current state has not been visited before.

Question

Incorporate the isNewState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState()) {}

} while (this.backtrack());

22/49

States

public boolean isEndState()

tests whether the current state is a final state.

Question

Incorporate the isEndState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState()) {}

} while (this.backtrack());

23/49

States

public boolean isEndState()

tests whether the current state is a final state.

Question

Incorporate the isEndState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState()) {}

} while (this.backtrack());

23/49

States

public boolean isEndState()

tests whether the current state is a final state.

Question

Incorporate the isEndState method into the search method of
the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState()) {}

} while (this.backtrack());

23/49

States

public boolean isIgnoredState()

tests whether the current state can be ignored in the search.

States can, for example, be ignored by using in the system under
test the method ignoreIf(boolean) of JPF’s class Verify

which is part of the package gov.nasa.jpf.vm.

Question

Incorporate the isIgnoredState method into the search method
of the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (this.backtrack());

24/49

States

public boolean isIgnoredState()

tests whether the current state can be ignored in the search.

States can, for example, be ignored by using in the system under
test the method ignoreIf(boolean) of JPF’s class Verify

which is part of the package gov.nasa.jpf.vm.

Question

Incorporate the isIgnoredState method into the search method
of the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (this.backtrack());

24/49

States

public boolean isIgnoredState()

tests whether the current state can be ignored in the search.

States can, for example, be ignored by using in the system under
test the method ignoreIf(boolean) of JPF’s class Verify

which is part of the package gov.nasa.jpf.vm.

Question

Incorporate the isIgnoredState method into the search method
of the DFSearch class.

Answer

do {

while (this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (this.backtrack()); 24/49

The done attribute

Other components of JPF can end a search by setting the attribute
done of the class Search to true.

Question

Modify the search method of the DFSearch class to incorporate
the done attribute.

Answer

do {

while (!this.done &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack());

25/49

The done attribute

Other components of JPF can end a search by setting the attribute
done of the class Search to true.

Question

Modify the search method of the DFSearch class to incorporate
the done attribute.

Answer

do {

while (!this.done &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack());

25/49

The done attribute

Other components of JPF can end a search by setting the attribute
done of the class Search to true.

Question

Modify the search method of the DFSearch class to incorporate
the done attribute.

Answer

do {

while (!this.done &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack());

25/49

Request backtrack

Other components of JPF can request a search to backtrack by
means of the method

public boolean checkAndResetBacktrackRequest()

Question

Modify the search method of the DFSearch class to incorporate
the checkAndResetBacktrackRequest method.

Answer

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack());

26/49

Request backtrack

Other components of JPF can request a search to backtrack by
means of the method

public boolean checkAndResetBacktrackRequest()

Question

Modify the search method of the DFSearch class to incorporate
the checkAndResetBacktrackRequest method.

Answer

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack());

26/49

Request backtrack

Other components of JPF can request a search to backtrack by
means of the method

public boolean checkAndResetBacktrackRequest()

Question

Modify the search method of the DFSearch class to incorporate
the checkAndResetBacktrackRequest method.

Answer

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done && this.backtrack()); 26/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the forward method of the Search class to keep track of
the depth.

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.depth++;

}

return successful;

}

27/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the forward method of the Search class to keep track of
the depth.

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.depth++;

}

return successful;

}

27/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the forward method of the Search class to keep track of
the depth.

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.depth++;

}

return successful;

}

27/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the backtrack method of the Search class to keep track
of the depth.

Answer

protected boolean backtrack() {

boolean successful = super.backtrack();

if (successful) {

this.depth--;

}

return successful;

}

28/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the backtrack method of the Search class to keep track
of the depth.

Answer

protected boolean backtrack() {

boolean successful = super.backtrack();

if (successful) {

this.depth--;

}

return successful;

}

28/49

Depth of search

The Search class contains the attribute depth that can be used to
keep track of the depth of the search. It is initialized to zero.

Question

Override the backtrack method of the Search class to keep track
of the depth.

Answer

protected boolean backtrack() {

boolean successful = super.backtrack();

if (successful) {

this.depth--;

}

return successful;

}

28/49

Depth of search

JPF can be configured to limit the depth of the search by setting
the JPF property search.depth_limit. The default value of
search.depth_limit is Integer.MAX_VALUE. The Search class
provides the method getDepthLimit which returns the maximal
allowed depth of the search.

We introduce the following method in the DFSearch class.

private boolean checkDepthLimit() {

return this.depth < this.getDepthLimit();

}

29/49

Depth of search

Question

Incorporate checkDepthLimit into forward.

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.depth++;

successful = this.checkDepthLimit();

}

return successful;

}

30/49

Depth of search

Question

Incorporate checkDepthLimit into forward.

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.depth++;

successful = this.checkDepthLimit();

}

return successful;

}

30/49

Limit memory usage

The JPF property search.min_free captures the minimal amount
of memory, in bytes, that needs to remain free. The default value
is 1024 <<10 = 10242 = 1, 048, 576B ≈ 1MB. By leaving some
memory free, JPF can report that it ran out of memory and
provide some useful statistics instead of simply throwing an
OutOfMemoryError. The method checkStateSpaceLimit of the
class Search checks whether the minimal amount of memory that
should be left free is still available.

Question

Modify the search method of the DFSearch class to limit the
memory usage.

31/49

Limit memory usage

The JPF property search.min_free captures the minimal amount
of memory, in bytes, that needs to remain free. The default value
is 1024 <<10 = 10242 = 1, 048, 576B ≈ 1MB. By leaving some
memory free, JPF can report that it ran out of memory and
provide some useful statistics instead of simply throwing an
OutOfMemoryError. The method checkStateSpaceLimit of the
class Search checks whether the minimal amount of memory that
should be left free is still available.

Question

Modify the search method of the DFSearch class to limit the
memory usage.

31/49

Limit memory usage

Answer

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

!this.checkStateSpaceLimit() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState()) {}

} while (!this.done &&

!this.checkStateSpaceLimit() &&

this.backtrack());

32/49

Multiple errors?

The JPF property search.multiple_errors tells us whether the
search should report multiple errors (or just the first one). The
forward method also checks whether any property is violated after
the unexplored transition has been traversed. If a violation has
been detected then the attribute done is set to true if and only if
JPF has been configured to report at most one error.

The method hasPropertyTermination of the class Search

checks whether a violation was encountered during the last
transition. The method returns true if and only if a violation was
encountered and the attribute done is set to true.

Question

Modify the search method of the DFSearch class to take
search.multiple_errors into account.

33/49

Multiple errors?

The JPF property search.multiple_errors tells us whether the
search should report multiple errors (or just the first one). The
forward method also checks whether any property is violated after
the unexplored transition has been traversed. If a violation has
been detected then the attribute done is set to true if and only if
JPF has been configured to report at most one error.

The method hasPropertyTermination of the class Search

checks whether a violation was encountered during the last
transition. The method returns true if and only if a violation was
encountered and the attribute done is set to true.

Question

Modify the search method of the DFSearch class to take
search.multiple_errors into account.

33/49

Limit memory usage

Answer

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

!this.checkStateSpaceLimit() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState() &&

!this.hasPropertyTermination()) {}

} while (!this.done &&

!this.checkStateSpaceLimit() &&

this.backtrack());

34/49

Notifications

A search should also notify listeners of particular events by
invoking to the methods of the interface SearchListener, which
can be found in the package gov.nasa.jpf.search. The Search

class contains a number of notify methods.

Question

Modify the search method of the DFSearch class to incorporate
following notifications.

notifySearchStarted

notifySearchFinished

35/49

Notifications

A search should also notify listeners of particular events by
invoking to the methods of the interface SearchListener, which
can be found in the package gov.nasa.jpf.search. The Search

class contains a number of notify methods.

Question

Modify the search method of the DFSearch class to incorporate
following notifications.

notifySearchStarted

notifySearchFinished

35/49

Notifications

Answer

this.notifySearchStarted();

do {

while (!this.done &&

!this.checkAndResetBacktrackRequest() &&

this.forward() &&

!this.checkStateSpaceLimit() &&

this.isNewState() &&

!this.isEndState() &&

!this.isIgnoredState() &&

!this.hasPropertyTermination()) {}

} while (!this.done &&

!this.checkStateSpaceLimit() &&

this.backtrack());

this.notifySearchFinished();

36/49

Notifications

Question

Incorporate following notifications into the forward and
backtrack method.

notifyStateAdvanced

notifyStateBacktracked

notifyStateProcessed

37/49

Notifications

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.notifyStateAdvanced();

} else {

this.notifyStateProcessed();

}

return successful;

}

protected boolean backtrack() {

boolean successful = super.backtrack();

if (successful) {

this.notifyStateBacktracked();

}

return successful;

} 38/49

Notifications

Question

Override the checkStateSpaceLimit method and modify the
checkDepthLimit method to incorporate
notifySearchConstraintHit(String) to notify the following.

”memory limit reached”

”depth limit reached”

39/49

Notifications

Answer

public boolean checkStateSpaceLimit() {

boolean available = super.checkStateSpaceLimit();

if (!available) {

this.notifySearchConstraintHit("memory limit reached: " + this.minFreeMemory);

}

return available;

}

private boolean checkDepthLimit() {

boolean below = this.depth < this.getDepthLimit();

if (!below) {

this.notifySearchConstraintHit("depth limit reached: " + this.depth);

}

return below;

}

40/49

Notifications

Immediately after an invocation of the forward method of the
Search class, an invocation of the getCurrentError method of
the Search class returns null if and only if no property violation
has been detected.

Question

Modify the overridden forward method of the DFSearch class to
include an invocation of the notifyPropertyViolated method.

41/49

Notifications

Immediately after an invocation of the forward method of the
Search class, an invocation of the getCurrentError method of
the Search class returns null if and only if no property violation
has been detected.

Question

Modify the overridden forward method of the DFSearch class to
include an invocation of the notifyPropertyViolated method.

41/49

Notifications

Answer

protected boolean forward() {

boolean successful = super.forward();

if (successful) {

this.notifyStateAdvanced();

if (this.getCurrentError() != null) {

this.notifyPropertyViolated();

}

} else {

this.notifyStateProcessed();

}

return successful;

}

42/49

Instruction classes

Instruction

JVMLocalVariableInstruction

+ getVariableId()

ALOAD ASTORE DLOAD

43/49

Print variable ID of an Instruction

Question

Does every Instruction object have a variable ID?

Answer

No, only JVMLocalVariableInstruction objects.

44/49

Print variable ID of an Instruction

Question

Does every Instruction object have a variable ID?

Answer

No, only JVMLocalVariableInstruction objects.

44/49

Print variable ID of an Instruction

Question

How do we limit our attention to
JVMLocalVariableInstruction objects?

Answer

.... (Instruction instruction) {

if (instruction instanceof JVMLocalVariableInstruction) {

JVMLocalVariableInstruction variableInstruction =

(JVMLocalVariableInstruction) instruction;

System.out.println(variableInstruction.getVariableId());

}

}

45/49

Print variable ID of an Instruction

Question

How do we limit our attention to
JVMLocalVariableInstruction objects?

Answer

.... (Instruction instruction) {

if (instruction instanceof JVMLocalVariableInstruction) {

JVMLocalVariableInstruction variableInstruction =

(JVMLocalVariableInstruction) instruction;

System.out.println(variableInstruction.getVariableId());

}

}

45/49

Print variable ID of an Instruction

Question

Can we use getClass instead of instanceof?

Answer

No. Note that JVMLocalVariableInstruction is an abstract
class. Hence, one cannot create instances of the class. Therefore,
instruction.getClass() == JVMLocalVariableInstruction.class

always returns false. On the other hand,
instruction instanceof JVMLocalVariableInstruction

tests whether instruction is an instance of
JVMLocalVariableInstruction or any of its subclasses.

46/49

Print variable ID of an Instruction

Question

Can we use getClass instead of instanceof?

Answer

No. Note that JVMLocalVariableInstruction is an abstract
class. Hence, one cannot create instances of the class. Therefore,
instruction.getClass() == JVMLocalVariableInstruction.class

always returns false. On the other hand,
instruction instanceof JVMLocalVariableInstruction

tests whether instruction is an instance of
JVMLocalVariableInstruction or any of its subclasses.

46/49

Project

January 25: install JPF (5%)

February 15: draft proposal (2%)

February 25: proposal (3%)

March 8: first progress report (5%)

March 22: second progress report (5%)

Exam period: deliverables (20%)

47/49

Project

Very brief descriptions of the last three years’ projects can be
found here.

Students can work alone or in groups of two on their project.

Students are expected to work on average two hours per week on
their projects from now on.

48/49

https://wiki.eecs.yorku.ca/course_archive/2018-19/W/4315/projects

Project: potential topics

Potential topics include (but are not limited to)

implement a new listener,

implement a new search strategy,

apply JPF to some nontrivial code with randomization or
concurrency,

improve an existing listener (by adding Javadoc, improving
variable names, improving code structure, developing tests,
etc),

improve an existing search strategy (by adding Javadoc,
improving variable names, improving code structure,
developing tests, etc),

add functionality to an existing listener, and

add functionality to an existing search strategy.

49/49

