
Concurrency
EECS 4315

www.eecs.yorku.ca/course/4315/

1/40

www.eecs.yorku.ca/course/4315/

Race condition and data race

A race condition is a flaw that occurs when the timing or ordering
of events affects a program’s correctness. Generally speaking, some
kind of external timing or ordering non-determinism is needed to
produce a race condition.

A data race happens when there are two memory accesses in a
program where both

target the same location,

are performed concurrently by two threads,

are not all reads (at least one is a write),

are not synchronization operations.

2/40

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has both a data race and a race condition.

Hint

We have already seen such an example earlier in the course.

3/40

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has both a data race and a race condition.

Hint

We have already seen such an example earlier in the course.

3/40

Race condition and data race

/**

* Two threads, that share an account and both do

* a deposit concurrently, cause a data race and

* a race condition.

*/

public class Account {

private double balance;

public Account() {

this.balance = 0;

}

public void deposit(double amount) {

this.balance += amount;

}

}
4/40

Race condition and data race

public class Customer extends Thread {

private Account account;

public Customer(Account account) {

this.account = account;

}

public void run() {

this.account.deposit(1);

}

}

5/40

Race condition and data race

public class Customers {

public static void main(String[] args) {

Account account = new Account();

(new Customer(account)).start();

(new Customer(account)).start();

}

}

6/40

Race condition and data race

JPF application properties file

target=Customers

classpath=<path to Customers.class>

listener=gov.nasa.jpf.listener.PreciseRaceDetector

7/40

Race condition and data race

Using JPF to detect data races.

8/40

Race condition and data race

JPF’s output

JavaPathfinder core system v8.0 (rev 32+) - (C) 2005-2014 United States Government. All rights reserved.

== system under test

concurrency.Customers.main()

== search started: 3/18/19 9:03 PM

== error 1

gov.nasa.jpf.listener.PreciseRaceDetector

race for field concurrency.Account@15e.balance

Thread-1 at concurrency.Account.deposit(Account.java:7)

" WRITE: putfield concurrency.Account.balance

Thread-2 at concurrency.Account.deposit(Account.java:7)

" READ: getfield concurrency.Account.balance

9/40

Race condition and data race

JPF application properties file

target=Customers

classpath=<path to Customers.class>

listener=gov.nasa.jpf.listener.PreciseRaceDetector

@using=jpf-visual

report.errorTracePrinter.property_violation=trace

report.publisher+=,errorTracePrinter

report.errorTracePrinter.class=ErrorTracePrinter

shell=.shell.basicshell.BasicShell

shell.panels+=,errorTrace

shell.panels.errorTrace=ErrorTracePanel

10/40

Race condition and data race

11/40

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has a race condition but does not have a
data race.

Hint

Modify the previous example.

12/40

Race condition and data race

/**

* Two threads, that share an account and both do

* a deposit concurrently, cause a race condition

* but no data race.

*/

public class Account {

private double balance;

public void deposit(double amount) {

double temp;

synchronized (this) {

temp = this.balance;

}

temp += amount;

synchronized (this) {

this.balance = temp;

}

}

}

13/40

Race condition and data race

Many race conditions are due to data races, and many data races
lead to race conditions. However, we can have race conditions
without data races and data races without race conditions.

Question

Give an example that has a data race but does not have a race
condition.

Hint

Search for an element in an array.

14/40

Race condition and data race

/**

* Multiple threads searching for an element in an

* array may cause a data race but not a race condition.

*/

public class Search {

private int[] collection;

private boolean found;

public Search(int[] collection) {

this.collection = collection;

this.found = false;

}

public void find(int from, int to, int element) {

for (int i = from; i < to && !this.found; i++) {

if (this.collection[i] == element) {

this.found = true;

}

}

}
15/40

Race condition and data race

Extending JPF to detect data races.

16/40

SimpleRaceDetector

Problem

Develop a listener that detects data races (only for non-static
attributes that are not arrays).

There is a data race if in the first instruction of one transition
thread t1 accesses field f of object o and in the first instruction of
another transition thread t2 accesses field f of object o and t1 6= t2
and at least one of the accesses is a write.

17/40

SimpleRaceDetector

Problem

Develop a listener that detects data races (only for non-static
attributes that are not arrays).

There is a data race if in the first instruction of one transition
thread t1 accesses field f of object o and in the first instruction of
another transition thread t2 accesses field f of object o and t1 6= t2
and at least one of the accesses is a write.

17/40

SimpleRaceDetector

Question

Fill in the dots.
for each branching state

reads ← empty set

writes ← empty set

if the branching is caused by concurrency

for each outgoing transition

if the first instruction is a read

of field f of object o
if ...

...

...

if the first instruction is a write

of field f of object o
if ...

...

...
18/40

SimpleRaceDetector

Answer

for each branching state

reads ← empty set

writes ← empty set

if the branching is caused by concurrency

for each outgoing transition

if the first instruction is a read

of field f of object o
if writes contains [f, o]

report data race

add [f, o] to reads

if the first instruction is a write

of field f of object o
if reads or writes contains [f, o]

report data race

add [f, o] to writes

19/40

SimpleRaceDetector

Question

Is it a SearchListener or a VMListener?

Answer

A VMListener.

Question

By which class is branching caused by concurrency represented?

Answer

The ChoiceGenerator class.

20/40

SimpleRaceDetector

Question

Is it a SearchListener or a VMListener?

Answer

A VMListener.

Question

By which class is branching caused by concurrency represented?

Answer

The ChoiceGenerator class.

20/40

SimpleRaceDetector

Question

Is it a SearchListener or a VMListener?

Answer

A VMListener.

Question

By which class is branching caused by concurrency represented?

Answer

The ChoiceGenerator class.

20/40

SimpleRaceDetector

Question

Is it a SearchListener or a VMListener?

Answer

A VMListener.

Question

By which class is branching caused by concurrency represented?

Answer

The ChoiceGenerator class.

20/40

SimpleRaceDetector

Question

Which methods of the VMListener interface should we
implement?

Answer

The choiceGeneratorSet method.

21/40

https://www.eecs.yorku.ca/course_archive/2018-19/W/4315/api/jpf.api/gov/nasa/jpf/vm/VMListener.html

SimpleRaceDetector

Question

Which methods of the VMListener interface should we
implement?

Answer

The choiceGeneratorSet method.

21/40

https://www.eecs.yorku.ca/course_archive/2018-19/W/4315/api/jpf.api/gov/nasa/jpf/vm/VMListener.html

JPF classes

*

FieldInfo

ElementInfo

GETFIELD

PUTFIELD

Instruction

ThreadInfo

�interface�
ChoiceGenerator

ThreadChoiceFromSet

22/40

SimpleRaceDetector

reads ← empty set

writes ← empty set

if the branching is caused by concurrency

for each outgoing transition

public void choiceGeneratorSet(VM vm, ChoiceGenerator<?> choice) {

Set<Read> reads = new HashSet<Read>();

Set<Write> writes = new HashSet<Write>();

if (choice instanceof ThreadChoiceFromSet) {

ThreadChoiceFromSet threadChoice =

(ThreadChoiceFromSet) choice;

for (ThreadInfo thread : threadChoice.getAllThreadChoices()) {

23/40

SimpleRaceDetector

if the first instruction is a read

of field f of object o
if writes contains [f , o]
report data race

add [f , o] to reads

Instruction instruction = thread.getPC();

if (instruction instanceof GETFIELD) {

GETFIELD get = (GETFIELD) instruction;

FieldInfo field = get.getFieldInfo();

ElementInfo object = get.peekElementInfo(thread);

Read read = new Read(object, field);

if (writes.contains(read)) {

System.out.printf("Data race on s\n", field);

}

reads.add(read);

}
24/40

Stack

Question

What are the two operations of the abstract data type Stack?

Answer

push and pop.

25/40

Stack

Question

What are the two operations of the abstract data type Stack?

Answer

push and pop.

25/40

Stack

We implement the stack as a singly linked list of nodes. Each node
contains an element and a reference to the next node. The variable
top refers to the first node of the linked list and is initially
undefined (null).

Question

How can we implement the push operation?

Answer

new = node with element e;

new.next = top;

top = new;

26/40

Stack

We implement the stack as a singly linked list of nodes. Each node
contains an element and a reference to the next node. The variable
top refers to the first node of the linked list and is initially
undefined (null).

Question

How can we implement the push operation?

Answer

new = node with element e;

new.next = top;

top = new;

26/40

Stack

Question

How can we implement the pop operation?

Answer

if (top == null)

return EMPTY;

else

temp = top;

top = top.next;

return element of temp;

27/40

Stack

Question

How can we implement the pop operation?

Answer

if (top == null)

return EMPTY;

else

temp = top;

top = top.next;

return element of temp;

27/40

Compare-and-swap (CAS)

The operation CAS(variable, expected, new) atomically

loads the value of variable,

compares that value to expected,

assigns new to variable if the comparison succeeds, and

returns the old value of variable.

28/40

Compare-and-swap (CAS)

Assume that the shared variable value is initialized to zero.

Thread 1:

value = 1;

print "(1, " + value + ")";

Thread 2:

old = CAS(value, 0, 2);

print "(2, " + old + ")";

Question

What is the output produced and the final value of value?

Answer

The output is either ”(1, 1) (2, 1)” or ”(2, 0) (1, 1)” and the final
value is one.

29/40

Compare-and-swap (CAS)

Assume that the shared variable value is initialized to zero.

Thread 1:

value = 1;

print "(1, " + value + ")";

Thread 2:

old = CAS(value, 0, 2);

print "(2, " + old + ")";

Question

What is the output produced and the final value of value?

Answer

The output is either ”(1, 1) (2, 1)” or ”(2, 0) (1, 1)” and the final
value is one.

29/40

CAS

We use the CAS operation.

Question

How can we implement the push operation?

Answer

push(e):

new = node with element e;

do

temp = top;

new.next = temp;

while (CAS(top, temp, new) != temp);

30/40

CAS

We use the CAS operation.

Question

How can we implement the push operation?

Answer

push(e):

new = node with element e;

do

temp = top;

new.next = temp;

while (CAS(top, temp, new) != temp);

30/40

CAS

We use the CAS operation.

Question

How can we implement the pop operation?

Answer

pop():

do

temp = top;

if (temp is undefined)

return EMPTY

while (CAS(top, temp, temp.next) != temp);

return element of temp;

31/40

CAS

We use the CAS operation.

Question

How can we implement the pop operation?

Answer

pop():

do

temp = top;

if (temp is undefined)

return EMPTY

while (CAS(top, temp, temp.next) != temp);

return element of temp;

31/40

java.util.concurrent.atomic

The Java package java.util.concurrent.atomic contains
classes that support lock-free thread-safe programming on single
variables.

32/40

AtomicReference〈V〉

Objects of type AtomicReference<V> contain a value of type V
that may be updated atomically.

The class contains the method

public final boolean compareAndSet(V expect, V update)

It atomically sets the value to update if the current value of the
object == expect. It returns true if the update is successful, and
false otherwise.

33/40

Node〈T〉

public class Node<T> {

private final T data;

private Node<T> next;

public Node(T data, Node<T> next) {

this.data = data;

this.next = next;

}

...

}

34/40

AtomicReference〈V〉

Problem

Implement a Stack by means of AtomicReference<V>.

35/40

Stack

public class Stack<T> {

private final AtomicReference<Node<T>> top;

public Stack() {

super();

this.top = new AtomicReference<Node<T>>();

}

...

}

36/40

Stack

public T pop() throws Exception {

Node<T> node;

do {

node = this.top.get();

if (node == null) {

throw new Exception();

}

}

while (!this.top.compareAndSet(node, node.getNext()));

return node.getData();

}

37/40

Stack

public void push(T data) {

Node<T> node = new Node<T>(data, null);

do {

node.setNext(this.top.get());

}

while (!this.top.compareAndSet(node.getNext(), node));

}

38/40

Data race?

Given an empty stack, one thread pushes 1 onto the stack and
another thread pops an element from the stack.

Question

Is there a data race?

Question

According to JPF

================================ results

no errors detected

39/40

Data race?

Given an empty stack, one thread pushes 1 onto the stack and
another thread pops an element from the stack.

Question

Is there a data race?

Question

According to JPF

================================ results

no errors detected

39/40

Data race?

The AtomicReference class contains the following.

import sun.misc.Unsafe;

private static final Unsafe unsafe = Unsafe.getUnsafe();

public final boolean compareAndSet(V expect, V update) {

return unsafe.compareAndSwapObject(this, valueOffset,

expect, update);

}

In JPF the class sun.misc.Unsafe is handled by the native peer
class JPF_sun_misc_Unsafe. Hence, the code is executed, not
model checked. Therefore, no data race is detected.

40/40

