Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Linear temporal logic (LTL) is a logic to reason about systems with nondeterminism.

The logic was introduced by Amir Pnueli.

A. Pnueli. The temporal logic of programs. In *Proceedings of the 18th IEEE Symposium on Foundations of Computer Science*, pages 46–67. Providence, RI, USA, October/November 1977. IEEE.

Amir Pnueli (1941–2009)

- Recipient of the Turing Award (1996)
- Recipient of the Israel prize (2000)
- Foreign Associate of the U.S. National Academy of Engineering (1999)
- Fellow of the Association for Computing Machinery (2007)

Source: David Monniaux

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even or a particular method being invoked).

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \neg b$ is an LTL formula?

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \neg b$ is an LTL formula?

Answer

Yes.

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \bigcirc$ is an LTL formula?

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \bigcirc$ is an LTL formula?

Answer No.

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \neg (\bigcirc b \cup c)$ is an LTL formula?

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Is $a \land \neg (\bigcirc b \cup c)$ is an LTL formula?

Answer Yes.

Question
Does the execution path
satisfy the atomic proposition blue?

Answer	
No.	

Answer	
No.	

Answer	
Yes.	

Answer	
Yes.	

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Answer

Yes!^a

^aAll states before the first red state are blue.

As usual

$$true = a \lor \neg a$$
$$f \lor g = \neg (\neg f \land \neg g)$$
$$f \Rightarrow g = \neg f \lor g$$

Also

 $Xf: \bigcirc f$ $Ff: \Diamond f$ $Gf: \Box f$

We introduce two basic tense operators, F and G. A. Pnueli. The temporal logic of programs. In *Proceedings of the* 18th IEEE Symposium on Foundations of Computer Science, pages 46-67. Providence, RI, USA, October/November 1977. IEEE.

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Answer

 $\mathsf{red} \land \bigcirc \mathsf{green}$

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light becomes eventually amber."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light becomes eventually amber."

Answer

⊘amber

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light is infinitely often red."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light is infinitely often red."

 $\Box \Diamond \mathbf{red}$

Question

What does the formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?
What does the formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

Answer

"Once green, the light cannot become red immediately."

Draw the state space diagram of a model of a traffic light. Label (with colours) the states.

Draw the state space diagram of a model of a traffic light. Label (with colours) the states.

Definition

A transition system is a tuple $\langle S, L, I,
ightarrow, \ell
angle$ consisting of

- a set S of states,
- a set L of labels,
- a set $I \subseteq S$ of initial states,
- a transition relation $\rightarrow \subseteq S \times S$ such that for all $s \in S$ there exists $t \in S$ such that $s \rightarrow t$, and
- a labelling function $\ell: S \to 2^L$.

 2^L denotes the set of subsets of L.

What is $2^{\{1,2,3\}}$?

What is $2^{\{1,2,3\}}$?

Answer

$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Formally define the transition system modelling a traffic light.

Formally define the transition system modelling a traffic light.

Answer

 $\begin{array}{l} \langle \{1,2,3\}, \{\text{red}, \text{green}, \text{amber}\}, \{1\}, \{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1\}, \{1 \mapsto \{\text{red}\}, 2 \mapsto \{\text{green}\}, 3 \mapsto \{\text{amber}\}\} \rangle \end{array}$

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Question

What is *Paths*(2)?

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Question

What is *Paths*(2)?

Answer

 $Paths(2) = \{231231231...\}$

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n] is the (n + 1)th state of the path p.

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n] is the (n + 1)th state of the path p.

Question

Let p = 123123... What is p[3]?

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n] is the (n + 1)th state of the path p.

Question

Let p = 123123... What is p[3]?

Answerp[3] = 1.

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n..] is the suffix starting with the (n + 1)th state of the path p.

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n..] is the suffix starting with the (n + 1)th state of the path p.

Question

Let p = 123123... What is p[2..]?

Definition

Let $p \in Paths(s)$ and $n \ge 0$. Then p[n..] is the suffix starting with the (n + 1)th state of the path p.

Question

Let p = 123123... What is p[2..]?

Answer

$$p[2..] = 312312...$$

$p \models f$ denotes that path p satisfies LTL formula f.

 $p \models f$ denotes that path p satisfies LTL formula f.

$p \models f$ denotes that path p satisfies LTL formula f.

Answer

No.

 $p \models f$ denotes that path p satisfies LTL formula f.

$p \models f$ denotes that path p satisfies LTL formula f.

Answer

Yes.

 $p \models f$ denotes that path p satisfies LTL formula f.

 $p \models f$ denotes that path p satisfies LTL formula f.

Answer

Yes.

 $p \models f$ denotes that path p satisfies LTL formula f.

Question $123123... \models \neg green?$

$p \models f$ denotes that path p satisfies LTL formula f.

Answer

Yes.

 $p \models f$ denotes that path p satisfies LTL formula f.

 $p \models f$ denotes that path p satisfies LTL formula f.

Answer

Yes.

Definition

$$p \models a \text{ iff } a \in \ell(p[0])$$

$$p \models f \land g \text{ iff } p \models f \land p \models g$$

$$p \models \neg f \text{ iff } p \not\models f$$

$$p \models \bigcirc f \text{ iff } p[1..] \models f$$

$$p \models f \cup g \text{ iff } \exists i \ge 0 : p[i..] \models g \land \forall 0 \le j < i : p[j..] \models f$$

How can we express $p \models \Diamond f$ in terms of $\cdots \models f$?

How can we express $p \models \Diamond f$ in terms of $\cdots \models f$?

Answer

$$p \models \Diamond f$$

iff $p \models \text{true U } f$
iff $\exists i \ge 0 : p[i..] \models f \land \forall 0 \le j < i : p[j..] \models \text{true}$
iff $\exists i \ge 0 : p[i..] \models f$

How can we express $p \models \Box f$ in terms of $\cdots \models f$?

How can we express $p \models \Box f$ in terms of $\cdots \models f$?

Answer

$$p \models \Box f$$

 $ext{iff } p \models \neg \Diamond \neg f$
 $ext{iff } \neg (\exists i \ge 0 : p[i..] \models \neg f)$
 $ext{iff } orall i \ge 0 : p[i..] \models f$

Let $TS = \langle S, L, I, \rightarrow, \ell \rangle$ be a transition system. Then $TS \models f \text{ iff } \forall s \in I : \forall p \in Paths(s) : p \models f$

Question

 $TS \models \Diamond magenta?$

Question

 $TS \models \Diamond magenta?$

Answer

Yes.

Question

 $TS \models \Box \Diamond blue?$

Question

 $TS \models \Box \Diamond blue?$

Answer

No.

Question $TS \models \Box(\neg blue \Rightarrow \bigcirc(magenta \lor red))?$

Question

$$TS \models \Box(\neg \mathsf{blue} \Rightarrow \bigcirc(\mathsf{magenta} \lor \mathsf{red}))?$$

Answer

Yes.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property $vm.max_transition_length$, LTL's next operator \bigcirc is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid f \cup f$$

where *a* is an atomic proposition.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property $vm.max_transition_length$, LTL's next operator \bigcirc is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid f \cup f$$

where a is an atomic proposition.

Atomic proposition may be used to express properties of JPF's virtual machine's state, such as the values of attributes or local variables, method invocations, etc.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property vm.max_transition_length, LTL's next operator () is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid f \cup f$$

where a is an atomic proposition.

Atomic proposition may be used to express properties of JPF's virtual machine's state, such as the values of attributes or local variables, method invocations, etc.

The extensions bitbucket.org/petercipov/jpf-ltl and bitbucket.org/michelelombardi/jpf-ltl of JPF support LTL, but neither is stable.

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems TS,

$$TS \models f$$
 iff $TS \models g$.

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems TS,

$$TS \models f \text{ iff } TS \models g.$$

Exercise

Are the following formulas equivalent? Either provide a proof or a counter example.

(a) $\Diamond (f \land g) \equiv \Diamond f \land \Diamond g?$ (b) $\Diamond \bigcirc f \equiv \bigcirc \Diamond f?$

More practice questions can be found in the textbook.

$$\Diamond (f \land g) \not\equiv \Diamond f \land \Diamond g$$

For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

Consider the following transition system TS.

Let f =blue and g =red. Then $TS \models \Diamond f \land \Diamond g$ but $TS \not\models \Diamond (f \land g)$.

 $\Diamond \bigcirc f \equiv \bigcirc \Diamond f$

Proof: Let TS be a transition system. Let $s \in I$ and $p \in Paths(s)$. Then

$$p \models \Diamond \bigcirc f$$

iff $\exists i \ge 0 : p[i..] \models \bigcirc f$
iff $\exists i \ge 0 : p[i..][1..] \models f$
iff $\exists i \ge 0 : p[(i+1)..] \models f$
iff $\exists i \ge 0 : p[1..][i..] \models f$
iff $p[1..] \models \Diamond f$
iff $p \models \bigcirc \Diamond f$

The course evaluation for this course can now be completed at https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete the course evaluation. Your feedback allows me to improve the course for future students.

If at least 80% of the students in the course (that is, 12) complete the evaluation, I will bring cup cakes for the last lecture.