Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Linear temporal logic

Linear temporal logic (LTL) is a logic to reason about systems with nondeterminism.

The logic was introduced by Amir Pnueli.
A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pages 46-67. Providence, RI, USA, October/November 1977. IEEE.

Amir Pnueli (1941-2009)

- Recipient of the Turing Award (1996)
- Recipient of the Israel prize (2000)
- Foreign Associate of the U.S. National Academy of Engineering (1999)
- Fellow of the Association for Computing Machinery (2007)

Source: David Monniaux

Linear temporal logic

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even or a particular method being invoked).

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \neg b$ is an LTL formula?

LTL

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \neg b$ is an LTL formula?

Answer

Yes.

LTL

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \bigcirc$ is an LTL formula?

LTL

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \bigcirc$ is an LTL formula?

Answer
No.

LTL

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \neg(\bigcirc b \cup c)$ is an LTL formula?

LTL

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Is $a \wedge \neg(\bigcirc b \cup c)$ is an LTL formula?

Answer

Yes.

Given an execution path p, does it satisfy a particular LTL formula f ?

An atomic proposition a is satisfied if a holds in the initial state of the execution path.

Given an execution path p, does it satisfy a particular LTL formula f ?

An atomic proposition a is satisfied if a holds in the initial state of the execution path.

Question

Does the execution path

satisfy the atomic proposition red?

Given an execution path p, does it satisfy a particular LTL formula f ?

An atomic proposition a is satisfied if a holds in the initial state of the execution path.

Question

Does the execution path

satisfy the atomic proposition red?

Answer

Yes.

Given an execution path p, does it satisfy a particular LTL formula f ?

An atomic proposition a is satisfied if a holds in the initial state of the execution path.

Question

Does the execution path

satisfy the atomic proposition blue?

Given an execution path p, does it satisfy a particular LTL formula f ?

An atomic proposition a is satisfied if a holds in the initial state of the execution path.

Question

Does the execution path

satisfy the atomic proposition blue?

Answer

No.

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

satisfy the atomic proposition $\bigcirc r e d$?

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

$$
\square \rightarrow+\rightarrow+\infty
$$

satisfy the atomic proposition \bigcirc red?

Answer

No.

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

satisfy the atomic proposition \bigcirc blue?

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

$$
\longrightarrow \rightarrow+\rightarrow+\infty
$$

satisfy the atomic proposition \bigcirc blue?

Answer

Yes.

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

satisfy the atomic proposition $\bigcirc \bigcirc$ red?

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $\bigcirc a$ (pronounced as next a) is satisfied if a holds in the next state of the execution path (that is, the second state).

Question

Does the execution path

$$
\bigcirc \rightarrow \infty
$$

satisfy the atomic proposition $\bigcirc \bigcirc$ red?

Answer

Yes.

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Question

Does the execution path

satisfy the atomic proposition red U blue?

Given an execution path p, does it satisfy a particular LTL formula f ?

The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Question

Does the execution path

$$
\rightarrow \rightarrow \rightarrow+\infty
$$

satisfy the atomic proposition red U blue?

Answer

Yes.

Given an execution path p, does it satisfy a particular LTL formula f ?
The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Question

Does the execution path

satisfy the atomic proposition blue U red?

Given an execution path p, does it satisfy a particular LTL formula f ?
The LTL formula $a \cup b$ (pronounced as a until b) is satisfied if b holds in some state of the execution path and a holds in all states before that state.

Question

Does the execution path

satisfy the atomic proposition blue U red?

Answer

Yes! ${ }^{a}$
${ }^{a}$ All states before the first red state are blue.

Syntactic sugar

As usual

$$
\begin{aligned}
\text { true } & =a \vee \neg a \\
f \vee g & =\neg(\neg f \wedge \neg g) \\
f \Rightarrow g & =\neg f \vee g
\end{aligned}
$$

Also

$$
\begin{aligned}
& \diamond f=\operatorname{true} \cup f \\
& \square f=\neg \diamond \neg f
\end{aligned}
$$

(eventually f)
(always f)

Alternative syntax

$$
\begin{aligned}
& \text { Xf }: \bigcirc f \\
& \text { Ff: } \begin{array}{l}
\text { Gf }
\end{array} \\
& \mathrm{Gf}: \square f
\end{aligned}
$$

We introduce two basic tense operators, F and G. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on Foundations of Computer Science, pages 46-67. Providence, RI, USA, October/November 1977. IEEE.

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Answer

red \wedge Ogreen

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light becomes eventually amber."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light becomes eventually amber."

Answer

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light is infinitely often red."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light is infinitely often red."

Answer

$\square \diamond$ red

Question
What does the formula \square (green $\Rightarrow \neg \bigcirc$ red) express?

Question
What does the formula \square (green $\Rightarrow \neg \bigcirc$ red) express?

Answer
 "Once green, the light cannot become red immediately."

State space diagram

Question
Draw the state space diagram of a model of a traffic light. Label (with colours) the states.

State space diagram

Question

Draw the state space diagram of a model of a traffic light. Label (with colours) the states.

Answer

Transition system

Definition

A transition system is a tuple $\langle S, L, I, \rightarrow, \ell\rangle$ consisting of

- a set S of states,
- a set L of labels,
- a set $I \subseteq S$ of initial states,
- a transition relation $\rightarrow \subseteq S \times S$ such that for all $s \in S$ there exists $t \in S$ such that $s \rightarrow t$, and
- a labelling function $\ell: S \rightarrow 2^{L}$.
2^{L} denotes the set of subsets of L.

Powerset

Question
What is $2^{\{1,2,3\}}$?

Powerset

Question

What is $2^{\{1,2,3\}}$?

Answer
$\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Transition system

Question

Formally define the transition system modelling a traffic light.

Transition system

Question

Formally define the transition system modelling a traffic light.

Answer

$\langle\{1,2,3\},\{$ red, green, amber $\},\{1\},\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 1\},\{1 \mapsto$ $\{$ red $\}, 2 \mapsto\{$ green $\}, 3 \mapsto\{$ amber $\}\}\rangle$

Execution paths

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Execution paths

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Question

What is Paths(2)?

Execution paths

Definition

A path is an infinite sequence of states. Paths(s) is the set of path starting in state s.

Question

What is Paths(2)?

Answer
Paths $(2)=\{231231231 \ldots\}$

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n]$ is the $(n+1)$ th state of the path p.

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n]$ is the $(n+1)$ th state of the path p.

Question

Let $p=123123 \ldots$ What is $p[3]$?

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n]$ is the $(n+1)$ th state of the path p.

Question

Let $p=123123 \ldots$ What is $p[3]$?

Answer
$p[3]=1$.

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n .$.$] is the suffix starting with$ the $(n+1)$ th state of the path p.

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n .$.$] is the suffix starting with$ the $(n+1)$ th state of the path p.

Question

Let $p=123123 \ldots$. What is $p[2 .$.$] ?$

Execution paths

Definition

Let $p \in \operatorname{Paths}(s)$ and $n \geq 0$. Then $p[n .$.$] is the suffix starting with$ the $(n+1)$ th state of the path p.

Question

Let $p=123123 \ldots$. What is $p[2 .$.$] ?$

Answer
$p[2 .]=.312312 \ldots$

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \models$ green?

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.
Question
$123123 \ldots$. $=$ green?

Answer

No.

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \models$. . \models green?

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \models$. . \models green?

Answer
Yes.

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \vDash$ red \wedge Ogreen?

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \vDash$ red $\wedge \bigcirc$ green?

Answer

Yes.

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

123123... $\vDash \neg$ green?

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.
Question
$123123 \ldots \models \neg$ green?

Answer
Yes.

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.

Question

$123123 \ldots \models$ red U green?

Semantics of LTL

$p \models f$ denotes that path p satisfies LTL formula f.
Question
$123123 \ldots \models$ red U green?

Answer
Yes.

Definition

$$
\begin{aligned}
p & \models a \text { iff } a \in \ell(p[0]) \\
p & =f \wedge g \text { iff } p \models f \wedge p \models g \\
p & \models \neg f \text { iff } p \not \models f \\
p & \models \bigcirc f \text { iff } p[1 . .] \models f \\
p & =f \cup g \text { iff } \exists i \geq 0: p[i . .] \models g \wedge \forall 0 \leq j<i: p[j . .] \models f
\end{aligned}
$$

Semantics of LTL

Question

How can we express $p \models \diamond f$ in terms of $\cdots \models f$?

Question

How can we express $p \models \diamond f$ in terms of $\cdots \models f$?

Answer

$$
\begin{aligned}
& p \models \diamond f \\
& \quad \text { iff } p \models \operatorname{true} \cup f \\
& \quad \text { iff } \exists i \geq 0: p[i . .] \models f \wedge \forall 0 \leq j<i: p[j . .] \models \text { true } \\
& \quad \text { iff } \exists i \geq 0: p[i . .] \models f
\end{aligned}
$$

Semantcs of LTL

Question

How can we express $p \models \square f$ in terms of $\cdots \models f$?

Question

How can we express $p \models \square f$ in terms of $\cdots \models f$?

Answer

$$
p \models \square f
$$

$$
\begin{aligned}
& \text { iff } p \models \neg \diamond \neg f \\
& \text { iff } \neg(\exists i \geq 0: p[i . .] \models \neg f) \\
& \text { iff } \forall i \geq 0: p[i . .] \models f
\end{aligned}
$$

Semantcs of LTL

Let $T S=\langle S, L, I, \rightarrow, \ell\rangle$ be a transition system. Then

$$
T S \models f \text { iff } \forall s \in I: \forall p \in \operatorname{Paths}(s): p \models f
$$

Semantcs of LTL

Question
$T S \models \diamond$ magenta?

Semantcs of LTL

Question
$T S \models \diamond$ magenta?

Answer
Yes.

Semantcs of LTL

Question
$T S \models \square \diamond$ blue?

Semantcs of LTL

Question
$T S \models \square \diamond$ blue?

Answer
No.

Semantcs of LTL

Question
$T S \models \square(\neg$ blue $\Rightarrow \bigcirc($ magenta \vee red $))$?

Semantcs of LTL

Question
$T S \models \square(\neg$ blue $\Rightarrow \bigcirc($ magenta \vee red $))$?

Answer
Yes.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property vm.max_transition_length, LTL's next operator \bigcirc is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$
f::=a|f \wedge f| \neg f \mid f \cup f
$$

where a is an atomic proposition.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property vm.max_transition_length, LTL's next operator \bigcirc is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$
f::=a|f \wedge f| \neg f \mid f \cup f
$$

where a is an atomic proposition.
Atomic proposition may be used to express properties of JPF's virtual machine's state, such as the values of attributes or local variables, method invocations, etc.

LTL and JPF

Since the "size" of a transition in JPF can be influenced by the property vm.max_transition_length, LTL's next operator \bigcirc is not well-defined in the context of JPF.

Therefore, in the context of JPF we may want to consider the logic defined by the grammar

$$
f::=a|f \wedge f| \neg f \mid f \cup f
$$

where a is an atomic proposition.
Atomic proposition may be used to express properties of JPF's virtual machine's state, such as the values of attributes or local variables, method invocations, etc.

The extensions bitbucket.org/petercipov/jpf-|t| and bitbucket.org/michelelombardi/jpf-ItI of JPF support LTL, but neither is stable.

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems $T S$,

$$
T S \models f \text { iff } T S \models g .
$$

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems $T S$,

$$
T S \models f \text { iff } T S \models g .
$$

Exercise

Are the following formulas equivalent? Either provide a proof or a counter example.
(a) $\diamond(f \wedge g) \equiv \diamond f \wedge \diamond g$?
(b) $\diamond \bigcirc f \equiv \bigcirc \diamond f$?

More practice questions can be found in the textbook.

Equivalence

$\diamond(f \wedge g) \not \equiv \diamond f \wedge \diamond g$
For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

Consider the following transition system TS.

Let $f=$ blue and $g=$ red. Then $T S \vDash \diamond f \wedge \diamond g$ but $T S \not \vDash \diamond(f \wedge g)$.

Equivalence

$\diamond \bigcirc f \equiv \bigcirc \diamond f$
Proof: Let $T S$ be a transition system. Let $s \in I$ and $p \in \operatorname{Paths}(s)$. Then

$$
\begin{aligned}
& p \models \diamond \bigcirc f \\
& \text { iff } \exists i \geq 0: p[i . .] \models \bigcirc f \\
& \text { iff } \exists i \geq 0: p[i . .][1 . .] \models f \\
& \text { iff } \exists i \geq 0: p[(i+1) . .] \models f \\
& \text { iff } \exists i \geq 0: p[1 . .][i . .] \models f \\
& \text { iff } p[1 . .] \models \diamond f \\
& \text { iff } p \models \bigcirc \diamond f
\end{aligned}
$$

Course evaluation

The course evaluation for this course can now be completed at https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete the course evaluation. Your feedback allows me to improve the course for future students.

If at least 80% of the students in the course (that is, 12) complete the evaluation, I will bring cup cakes for the last lecture.

