
Testing on Steriods
EECS 4315

wiki.eecs.yorku.ca/course/4315/

1/39

wiki.eecs.yorku.ca/course/4315/

Unit testing

A unit test is designed to test a single unit of code, for example, a
method.

Such a test should be automated as much as possible; ideally, it
should require no human interaction in order to run, should assess
its own results, and notify the programmer only when it fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

2/39

JUnit

JUnit is a Java unit testing framework developed by Kent Beck
and Erich Gamma.

JUnit is available at http://junit.org/junit5/.

3/39

http://junit.org/junit5/

Java annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang and,
therefore, need not be imported.)

JUnit contains annotations such as

@Test

(The annotation type Test is part of org.junit.jupiter.api
and, therefore, needs to be imported.)

An annotation can include elements and their values:

@EnabledIfSystemProperty(named="os.arch", matches=".*64.*")

(The annotation type EnabledIfSystemProperty is part of
org.junit.jupiter.api.condition.)

4/39

A test case

import org.junit.jupiter.api.Assertions;

import org.junit.jupiter.api.Test;

public class ... {

@Test

public void ...() {

...

}

@Test

public void ...() {

...

}

}

5/39

Names of test methods

It is good practice to use descriptive names for the test methods.
This makes tests more readable when they are looked at later.

6/39

Assertions in test methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assertions class of the
org.junit.jupiter.api package.

Do not confuse these assertions with Java’s assert statement.

7/39

https://junit.org/junit5/docs/current/api/org/junit/jupiter/api/Assertions.html

Body of unit test method

1 Create some objects.

2 Invoke methods on them.

3 Check the results using a method of the Assertions class.

8/39

Test case

For each method and constructor (from simplest to most complex)

1 Study its API.

2 Create unit tests.

9/39

Lab 1

Write a JUnit test case to test the class Color, whose API can be
found here.

10/39

https://www.eecs.yorku.ca/course_archive/2018-19/W/4315/lab1/lab/Color.html

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

11/39

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

11/39

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

11/39

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

Question

How many “inputs” does the constructor have?

Answer

Three.

11/39

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256 × 256 × 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

12/39

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256 × 256 × 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

12/39

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256 × 256 × 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

12/39

Test the constructor

Question

How many combinations of “inputs” for the constructor are there?

Answer

256 × 256 × 256 = 16777216 ≈ 107.

Question

Can we check all these combinations of “inputs”?

Answer

Yes.

12/39

Test the acccessors

Question

What can we test about the accessors?

Answer

That they return the correct values.

13/39

Test the acccessors

Question

What can we test about the accessors?

Answer

That they return the correct values.

13/39

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

14/39

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

14/39

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

14/39

Test the constant BLACK

Question

What can we test about the constant Color.BLACK?

Answer

That it is not null.

Question

Should we test that the three accessors return 0 for the constant
Color.BLACK?

Answer

No. This has not been specified in the API.

14/39

Test the equals method

Question

What can we test about the equals method?

Answer

a Color object is equal to itself,

a Color object is equal to a Color object with the same RGB
values,

a Color object is not equal to a Color object with the
different RGB values,

a Color object is not equal to null, and

a Color object is not equal to an object of another type.

15/39

Test the equals method

Question

What can we test about the equals method?

Answer

a Color object is equal to itself,

a Color object is equal to a Color object with the same RGB
values,

a Color object is not equal to a Color object with the
different RGB values,

a Color object is not equal to null, and

a Color object is not equal to an object of another type.

15/39

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256 × 256 × 256 × 256 × 256 × 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

16/39

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256 × 256 × 256 × 256 × 256 × 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

16/39

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256 × 256 × 256 × 256 × 256 × 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

16/39

Test the equals method

Question

Can we test that a Color object is not equal to a Color object
with the different RGB values for all possible combinations?

Answer

There are 256 × 256 × 256 × 256 × 256 × 256 ≈ 1014 and, hence,
no.

Question

Which combinations do we check?

Question

Random combinations.

16/39

Avoid break statements in loops

@Test

public void testConstructor() {

for (byte i = -128; i < 128; i++) {

...

if (i == 127) {

break;

}

}

}

17/39

Descriptive variable names

Color c = new Color(0, 0, 0);

Color c2 = new Color(0, 0, 0);

Question

Are these variable names descriptive?

Answer

No. They are cryptic variable names. As a result, their meaning
might not be clear to others. They are also very similar, which
makes it easy to mix them up.

18/39

Descriptive variable names

Color c = new Color(0, 0, 0);

Color c2 = new Color(0, 0, 0);

Question

Are these variable names descriptive?

Answer

No. They are cryptic variable names. As a result, their meaning
might not be clear to others. They are also very similar, which
makes it easy to mix them up.

18/39

Use constants

Instead of

@Test

public void testConstructor() {

for (byte i = -128; i < 128; i++) {

...

}

}

use

@Test

public void testConstructor() {

for (int i = Byte.MIN_VALUE; i <= Byte.MAX_VALUE; i++) {

...

}

}

19/39

Use constants

Instead of

@Test

public void testConstructor() {

for (byte i = -128; i < 128; i++) {

...

}

}

use

@Test

public void testConstructor() {

for (int i = Byte.MIN_VALUE; i <= Byte.MAX_VALUE; i++) {

...

}

}

19/39

Global variables

Question

What is the scope of the attribute in the following code snippet?

public class ColorTest {

private Color color;

@Test

public void testConstructor() { ... }

@Test

public void testBLACK() { ... }

...

}

Answer

The whole class. If possible, try to limit the scope.

20/39

Global variables

Question

What is the scope of the attribute in the following code snippet?

public class ColorTest {

private Color color;

@Test

public void testConstructor() { ... }

@Test

public void testBLACK() { ... }

...

}

Answer

The whole class. If possible, try to limit the scope.
20/39

Document your code

/**

* Tests the constructor for all combinations

* of RGB values.

*/

public void testConstructor() {

..

}

21/39

Exercise

Write a JUnit test case to test the class Boolean, whose API can
be found here.

22/39

http://www.eecs.yorku.ca/course_archive/2018-19/W/4315/api/boolean.api/Boolean.html

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

23/39

Test the constructor

Question

What can we test about the constructor?

Answer

That the created object is not null.

23/39

Test the booleanValue method

Question

What can we test about the booleanValue method?

Answer

Check if it returns the correct value.

24/39

Test the booleanValue method

Question

What can we test about the booleanValue method?

Answer

Check if it returns the correct value.

24/39

Test the constant TRUE

Question

What can we test about the constant TRUE?

Answer

Check if it is not null and has the correct value.

25/39

Test the constant TRUE

Question

What can we test about the constant TRUE?

Answer

Check if it is not null and has the correct value.

25/39

Test the compareTo method

Question

What can we test about the compareTo method?

Answer

1 Check if it returns a correct value.

2 Check if it throws an IllegalArgumentException if the
argument is null.

26/39

Test the compareTo method

Question

What can we test about the compareTo method?

Answer

1 Check if it returns a correct value.

2 Check if it throws an IllegalArgumentException if the
argument is null.

26/39

Test the compareTo method

Question

How many “inputs” does the compareTo method have?

Answer

Two: one.compareTo(two)

Question

How many combinations of “inputs” for the compareTo method
do we have to check?

Answer

Four.

27/39

Test the compareTo method

Question

How many “inputs” does the compareTo method have?

Answer

Two: one.compareTo(two)

Question

How many combinations of “inputs” for the compareTo method
do we have to check?

Answer

Four.

27/39

Test the compareTo method

Question

How many “inputs” does the compareTo method have?

Answer

Two: one.compareTo(two)

Question

How many combinations of “inputs” for the compareTo method
do we have to check?

Answer

Four.

27/39

Test the compareTo method

Question

How many “inputs” does the compareTo method have?

Answer

Two: one.compareTo(two)

Question

How many combinations of “inputs” for the compareTo method
do we have to check?

Answer

Four.

27/39

Test the compareTo method

@Test

public void testCompareTo() {

Boolean FALSE = new Boolean(false);

...

... Boolean.TRUE.compareTo(FALSE) ...

Question

Should we check if the result is 1?

Answer

No, we should check if the result is greater than zero.

28/39

Test the compareTo method

@Test

public void testCompareTo() {

Boolean FALSE = new Boolean(false);

...

... Boolean.TRUE.compareTo(FALSE) ...

Question

Should we check if the result is 1?

Answer

No, we should check if the result is greater than zero.

28/39

Test the compareTo method

Question

How many “inputs” does compareTo(null) have?

Answer

One.

Question

How many combinations of “inputs” for compareTo(null) do we
have to check?

Answer

Two.

29/39

Test the compareTo method

Question

How many “inputs” does compareTo(null) have?

Answer

One.

Question

How many combinations of “inputs” for compareTo(null) do we
have to check?

Answer

Two.

29/39

Test the compareTo method

Question

How many “inputs” does compareTo(null) have?

Answer

One.

Question

How many combinations of “inputs” for compareTo(null) do we
have to check?

Answer

Two.

29/39

Test the compareTo method

Question

How many “inputs” does compareTo(null) have?

Answer

One.

Question

How many combinations of “inputs” for compareTo(null) do we
have to check?

Answer

Two.

29/39

Test the equals method

Question

Do we have to test the equals method?

Answer

No, since it is not part of the API of the Boolean class.

30/39

Test the equals method

Question

Do we have to test the equals method?

Answer

No, since it is not part of the API of the Boolean class.

30/39

Correctness of the JUnit test cases

Question

Should we test the JUnit test cases?

Answer

Should we test the tests that test the JUnit test cases?

We may find bugs in our tests when a test case fails and we
inspect our code and the test case. When evaluating test cases, we
are often interested in coverage (code, path).

Software Engineering Testing (EECS 4313)

31/39

Correctness of the JUnit test cases

Question

Should we test the JUnit test cases?

Answer

Should we test the tests that test the JUnit test cases?

We may find bugs in our tests when a test case fails and we
inspect our code and the test case. When evaluating test cases, we
are often interested in coverage (code, path).

Software Engineering Testing (EECS 4313)

31/39

Correctness of the JUnit test cases

Question

Should we test the JUnit test cases?

Answer

Should we test the tests that test the JUnit test cases?

We may find bugs in our tests when a test case fails and we
inspect our code and the test case. When evaluating test cases, we
are often interested in coverage (code, path).

Software Engineering Testing (EECS 4313)

31/39

Test the Color class

Question

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

Answer

No.

Question

Why not?

Answer

Run the JUnit test case ColorTest several times.

32/39

Test the Color class

Question

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

Answer

No.

Question

Why not?

Answer

Run the JUnit test case ColorTest several times.

32/39

Test the Color class

Question

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

Answer

No.

Question

Why not?

Answer

Run the JUnit test case ColorTest several times.

32/39

Test the Color class

Question

If we run the JUnit test case ColorTest and all tests pass, can we
conclude that the class Color correctly implements the API?

Answer

No.

Question

Why not?

Answer

Run the JUnit test case ColorTest several times.

32/39

Test the Color class

Question

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

Answer

Let’s have a look at the code of testConstructorAndAccessors.

Answer

Because the code of testConstructorAndAccessors uses
randomization.

33/39

Test the Color class

Question

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

Answer

Let’s have a look at the code of testConstructorAndAccessors.

Answer

Because the code of testConstructorAndAccessors uses
randomization.

33/39

Test the Color class

Question

How is it possible that the JUnit test case ColorTest passes all
tests pass in some runs and fails the method
testConstructorAndAccessors in other runs?

Answer

Let’s have a look at the code of testConstructorAndAccessors.

Answer

Because the code of testConstructorAndAccessors uses
randomization.

33/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

The source code of most computer and video games contains some
sort of randomization. This provides games with the ability to
surprise players, which is a key factor to their long-term appeal.

Katie Salen and Eric Zimmerman. Rules of Play: Game Design
Fundamentals. The MIT Press. 2004.

34/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

The source code of most computer and video games contains some
sort of randomization. This provides games with the ability to
surprise players, which is a key factor to their long-term appeal.

Katie Salen and Eric Zimmerman. Rules of Play: Game Design
Fundamentals. The MIT Press. 2004.

34/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may reduce the expected running time or memory
usage.

Question

Which algorithms exploit randomization this way?

Answer

Randomized quicksort.

Skiplist.

. . .

35/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may reduce the expected running time or memory
usage.

Question

Which algorithms exploit randomization this way?

Answer

Randomized quicksort.

Skiplist.

. . .

35/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may reduce the expected running time or memory
usage.

Question

Which algorithms exploit randomization this way?

Answer

Randomized quicksort.

Skiplist.

. . .

35/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may reduce the expected running time or memory
usage.

Question

Which algorithms exploit randomization this way?

Answer

Randomized quicksort.

Skiplist.

. . .

35/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may allow us to solve problems.

Question

Which algorithms exploit randomization this way?

Answer

Consensus problem (in an asynchronous distributed system in
which processes may fail).

. . .

36/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may allow us to solve problems.

Question

Which algorithms exploit randomization this way?

Answer

Consensus problem (in an asynchronous distributed system in
which processes may fail).

. . .

36/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may allow us to solve problems.

Question

Which algorithms exploit randomization this way?

Answer

Consensus problem (in an asynchronous distributed system in
which processes may fail).

. . .

36/39

Randomization

Question

Why are we interested in randomization in our code?

Answer

Randomization may allow us to solve problems.

Question

Which algorithms exploit randomization this way?

Answer

Consensus problem (in an asynchronous distributed system in
which processes may fail).

. . .

36/39

Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

Question

Besides randomization, are there other programming concept that
give rise to nondeterminism?

Answer

Concurrency.

37/39

Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

Question

Besides randomization, are there other programming concept that
give rise to nondeterminism?

Answer

Concurrency.

37/39

Nondeterminism

Nondeterministic code is code that, even for the same input, can
exhibit different behaviors on different runs, as opposed to
deterministic code.

Randomization gives rise to nondeterminism.

Question

Besides randomization, are there other programming concept that
give rise to nondeterminism?

Answer

Concurrency.

37/39

Quiz 1

When: Friday January 11 during the lab

Topic: testing

38/39

