Invariants

Definition

The class of LTL formulas that capture invariants is defined by $\square g$ where

$$
g::=a|g \wedge g| \neg g .
$$

Invariants

Definition

The class of LTL formulas that capture invariants is defined by $\square g$ where

$$
g::=a|g \wedge g| \neg g .
$$

Example
 $\square \neg$ red

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Answer
\neg red $\wedge \square$ (○red \Rightarrow amber)

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Answer

$\square \diamond$ red

Leslie Lamport

- Won the Turing award in 2013.
- Won the Dijkstra prize three times (2000, 2005, 2014).
- Elected Fellow of the ACM in 2014.

Source: Leslie Lamport

Expressiveness of LTL

Question
Are there properties we cannot express in LTL?

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, "Always a state satisfying a can be reached."

Expressiveness of LTL

Theorem

There does not exists an LTL formula f with $T S \models f$ iff
$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \exists n \geq 0: q[n]=a$

How to modify the logic?

$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \underbrace{\exists n \geq 0: q[n] \vDash a}_{\diamond a}$

How to modify the logic?

$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \overbrace{\exists q \in \operatorname{Paths}(p[m]): \underbrace{\exists n \geq 0: q[n] \models a}_{\diamond a}}^{\exists>a}$

How to modify the logic?

$$
\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \underbrace{\exists \diamond a}_{\square q \in \operatorname{Paths}(p[m]): \underbrace{\exists n \geq 0: q[n] \models a}_{\bullet \exists \diamond a}}
$$

How to modify the logic?

How to modify the logic?

$$
\overbrace{\exists p \in \operatorname{Paths}(s): \underbrace{\exists \models n \geq 0: p[n] \models a}_{p \models \models \Delta}}^{? \models \exists \diamond a}
$$

Recall that $p \models \diamond a$ expresses that path p satisfies formula $\diamond a$.

Question

$? \vDash \exists \diamond$ a.

How to modify the logic?

$$
\overbrace{\exists p \in \operatorname{Paths}(s): \underbrace{\exists n \geq 0: p[n] \models a}_{p \models \vee \diamond a}}^{? \models \exists>a}
$$

Recall that $p \models \diamond$ a expresses that path p satisfies formula $\diamond a$.
Question
$? \vDash \exists \diamond$ a.

Answer
There exists a path p starting in state s such that $p \models \diamond$ a, hence, $s \models \exists \diamond a$.

How to modify the logic?

Recall that $p \neq \diamond a$ expresses that path p satisfies formula $\diamond a$.
Question
$? \vDash \exists \diamond$ a.

Answer

There exists a path p starting in state s such that $p \models \diamond$ a, hence, $s \models \exists \diamond a$.

Consequence
We should distinguish between path formulas and state formulas.

Computational Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Computation tree logic

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In, Dexter Kozen, editor, Proceedings of Workshop on Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71. Yorktown Heights, NY, USA, May 1981. Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In, Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the 5th International Symposium on Programming, volume 137 of Lecture Notes in Computer Science, pages 337-351. Torino, Italy, April 1982. Springer-Verlag.

Syntactic sugar

$$
\begin{aligned}
& \exists \diamond f=\exists(\text { true } U f) \\
& \forall \diamond f=\forall(\text { true } U f) \\
& \exists \square f=\neg(\text { true } U \neg f) \\
& \forall \square f=\neg(\text { true } U \neg f)
\end{aligned}
$$

Example

Question

How to express "Each red light is preceded by an amber light" in CTL?

Example

Question

How to express "Each red light is preceded by an amber light" in CTL?

Answer

$$
\neg \text { red } \wedge \forall \square(\text { amber } \vee \forall \bigcirc \neg \text { red })
$$

Example

Question

How to express "The light is infinitely often green" in CTL?

Example

Question

How to express "The light is infinitely often green" in CTL?

Answer $\forall \square \forall \diamond$ green

$$
\begin{array}{rll}
s \models a & \text { iff } & a \in \ell(s) \\
s \models f_{1} \wedge f_{2} & \text { iff } & s \models f_{1} \wedge s \models f_{2} \\
s \models \neg f & \text { iff } & s \not \equiv f \\
s \models \exists g & \text { iff } & \exists p \in \operatorname{Paths}(s): p \models g \\
s \models \forall g & \text { iff } & \forall p \in \operatorname{Paths}(s): p \models g
\end{array}
$$

and

$$
\begin{array}{rll}
p \models \bigcirc f & \text { iff } & p[1] \models f \\
p \models f_{1} \cup f_{2} & \text { iff } & \exists i \geq 0: p[i] \models f_{2} \wedge \forall 0 \leq j<i: p[j] \models f_{1}
\end{array}
$$

Semantics of CTL

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } U f)
$$

How is

$$
s \models \exists \diamond f
$$

defined?

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } U f)
$$

How is

$$
s \vDash \exists \diamond f
$$

defined?

```
Answer
\(\exists p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f\)
```


Semantics of CTL

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } U f)
$$

How is

$$
s \models \forall \diamond f
$$

defined?

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } U f)
$$

How is

$$
s \vDash \forall \diamond f
$$

defined?

Answer
$\forall p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f$

Semantics of CTL

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f) .
$$

How is

$$
s \vDash \exists \square f
$$

defined?

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f) .
$$

How is

$$
s \vDash \exists \square f
$$

defined?

> Answer
> $\exists p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f$

Semantics of CTL

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } U \neg f) .
$$

How is

$$
s \vDash \exists \square f
$$

defined?

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } U \neg f) .
$$

How is

$$
s \models \exists \square f
$$

defined?

Answer
$\forall p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f$

Semantics of CTL

$T S \models f$ iff $\forall s \in I: s \models f$.

Expressiveness of LTL and CTL

Theorem

The property
$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \exists n \geq 0: q[n]=a$
cannot be captured by LTL, but is captured by the CTL formula $\forall \square \exists \diamond a$.

Expressiveness of LTL and CTL

Theorem

The property

$$
\forall s \in I: \forall p \in \operatorname{Paths}(s): \exists i \geq 0: \forall j \geq i: p[j . .] \models a
$$

cannot be captured by CTL, but is captured by the LTL formula $\diamond \square a$.

Model checking CTL

Definition

The satisfaction set $\operatorname{Sat}(f)$ is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\} .
$$

Model checking CTL

Definition

The satisfaction set Sat (f) is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\} .
$$

Basic idea

Compute $\operatorname{Sat}(f)$ by recursion on the structure of f.

$$
T S \models f \text { iff } I \subseteq \operatorname{Sat}(f)
$$

Alternative view

Label each state with the subformulas of f that it satisfies.

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is Sat(a)?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is Sat(a)?

Answer
$\operatorname{Sat}(a)=\{s \in S \mid a \in \ell(s)\}$

Alternative view
Label each state s satisfying $a \in \ell(s)$ with a.

Example

Example

$$
\begin{aligned}
1 & \mapsto \emptyset \\
2 & \mapsto\{\text { red }\} \\
3 & \mapsto\{\text { red }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(f \wedge g)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(f \wedge g)$?

Answer

$$
\operatorname{Sat}(f \wedge g)=\operatorname{Sat}(f) \cap \operatorname{Sat}(g)
$$

Alternative view

Label states, that are labelled with both f and g, also with $f \wedge g$.

Example

Example

red \wedge blue

$$
\begin{aligned}
1 & \mapsto\{\text { blue }\} \\
2 & \mapsto\{\text { red }\} \\
3 & \mapsto\{\text { red, blue, red } \wedge \text { blue }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\neg f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\neg f)$?

Answer

$\operatorname{Sat}(\neg f)=S \backslash \operatorname{Sat}(f)$

Alternative view

Label each state, that is not labelled with f, with $\neg f$.

Example

$\neg($ red \wedge blue $)$

Example

$\neg($ red \wedge blue $)$

$$
\begin{aligned}
1 & \mapsto\{\text { blue }, \neg(\text { red } \wedge \text { blue })\} \\
2 & \mapsto\{\text { red, } \neg(\text { red } \wedge \text { blue })\} \\
3 & \mapsto\{\text { red, blue }, \text { red } \wedge \text { blue }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\exists \bigcirc f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc f)$?

Answer

$\operatorname{Sat}(\exists \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$ where $\operatorname{succ}(s)=\{t \in S \mid s \rightarrow t\}$.

Alternative view

Labels those states, that have a direct successor labelled with f, with $\exists \bigcirc f$.

Example

Example

$$
\begin{aligned}
1 & \mapsto\{\exists \bigcirc \mathrm{red}\} \\
2 & \mapsto\{\mathrm{red}, \exists \bigcirc \mathrm{red}\} \\
3 & \mapsto\{\mathrm{red}\}
\end{aligned}
$$

Second progress report

Submit the second progress report before Saturday March 30. If you submit your progress report before the deadline and you have made good progress with your project since the first progress report, you will receive 5 towards the mark for your project (40 in total).

Course evaluation

The course evaluation for this course can now be completed at https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete the course evaluation. Your feedback allows me to improve the course for future students.

If at least 80 of the students in the course (that is, 12) complete the evaluation, I will bring cup cakes for the last lecture.

