Model Checking CTL

 EECS 4315www.eecs.yorku.ca/course/4315/

Model checking CTL

Definition

The satisfaction set Sat (f) is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\} .
$$

Basic idea

Compute $\operatorname{Sat}(f)$ by recursion on the structure of f.

$$
T S \models f \text { iff } I \subseteq \operatorname{Sat}(f)
$$

Alternative view

Label each state with the subformulas of f that it satisfies.

Model checking CTL

$$
\begin{aligned}
\operatorname{Sat}(a) & =\{s \in S \mid a \in \ell(s)\} \\
\operatorname{Sat}(f \wedge g) & =\operatorname{Sat}(f) \cap \operatorname{Sat}(g) \\
\operatorname{Sat}(\neg f) & =S \backslash \operatorname{Sat}(f) \\
\operatorname{Sat}(\exists \bigcirc f) & =\{s \in S \mid \operatorname{succ}(s) \cap \operatorname{Sat}(f) \neq \emptyset\} \\
\operatorname{Sat}(\forall \bigcirc f) & =? \\
\operatorname{Sat}(\exists(f \cup g)) & =? \\
\operatorname{Sat}(\forall(f \cup g)) & =?
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall \bigcirc f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall \bigcirc f)$?

Answer

$$
\operatorname{Sat}(\forall \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \subseteq \operatorname{Sat}(f)\}
$$

Alternative view

Labels those states, with all direct successors labelled with f, with $\forall \bigcirc f$.

Example

Example

$$
\begin{aligned}
1 & \mapsto\{\forall \bigcirc \mathrm{red}\} \\
2 & \mapsto\{\mathrm{red}, \forall \bigcirc \mathrm{red}\} \\
3 & \mapsto\{\mathrm{red}\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists(f \cup g))$?

Model checking CTL

$s \in \operatorname{Sat}(\exists(f \cup g))$
iff $s \models \exists(f \cup g)$
iff $\exists p \in \operatorname{Paths}(s): p \models f \cup g$
iff $\exists p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models g \wedge \forall 0 \leq j<i: p[j] \models f$
iff $\exists p \in \operatorname{Paths}(s): p[0] \models g \vee(\exists i \geq 1: p[i] \models g \wedge \forall 0 \leq j<i: p[j] \models f)$
iff $\exists p \in \operatorname{Paths}(s): p[0] \models g \vee$

$$
(p[0] \models f \wedge \exists i \geq 1: p[i] \models g \wedge \forall 1 \leq j<i: p[j] \models f)
$$

iff $s \models g \vee(s \models f \wedge \exists s \rightarrow t: t \models \exists(f \cup g))$
iff $s \in \operatorname{Sat}(g) \vee(s \in \operatorname{Sat}(f) \wedge \exists t \in \operatorname{succ}(s): t \in \operatorname{Sat}(\exists(f \cup g)))$
iff $s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}$

Model checking CTL

As we have seen
$s \in \operatorname{Sat}(\exists(f \cup g))$
iff $s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

The set $\operatorname{Sat}(\exists(f \cup g))$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

The set $\operatorname{Sat}(\exists(f U g))$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Question

Does such a smallest subset exist?

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^{S} \rightarrow 2^{S}$ is monotone, then there exists a smallest $T \in 2^{S}$ such that $G(T)=T$.

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^{S} \rightarrow 2^{S}$ is monotone, then there exists a smallest $T \in 2^{S}$ such that $G(T)=T$.

This smallest $T \in 2^{S}$ is known as the least fixed point of G.

Bronislaw Knaster (1893-1980)

- Polish mathematician
- Received his Ph.D. degree from University of Warsaw
- Proved his fixed point theorem in 1928

Source: Konrad Jacobs

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Proposition

For all $n \in \mathbb{N}, G_{n} \subseteq G_{n+1}$.

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Proposition

For all $n \in \mathbb{N}, G_{n} \subseteq G_{n+1}$.

Proof

We prove this by induction on n. In the base case, $n=0$, we have that

$$
G_{0}=\emptyset \subseteq G_{1} .
$$

In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq G_{n}$. Since G is monotone, we have that

$$
G_{n}=G\left(G_{n-1}\right) \subseteq G\left(G_{n}\right)=G_{n+1}
$$

Knaster's fixed point theorem

Proposition
$G_{n}=G_{n+1}$ for some $n \in \mathbb{N}$.

Knaster's fixed point theorem

Proposition

$G_{n}=G_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $G_{n} \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_{n} \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_{n} contains at least n elements. Therefore, G_{m+1} contains more elements than S. This contradicts that $G_{m+1} \subseteq S$.

Knaster's fixed point theorem

Proposition

$G_{n}=G_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $G_{n} \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_{n} \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_{n} contains at least n elements. Therefore, G_{m+1} contains more elements than S. This contradicts that $G_{m+1} \subseteq S$.

We denote the G_{n} with $G_{n}=G_{n+1}$ by $\operatorname{fix}(G)$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $\operatorname{fix}(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}, G_{n} \subseteq T$ by induction on n. In the base case, $n=0$, we have that $G_{0}=\emptyset \subseteq T$. In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_{n}=G\left(G_{n-1}\right) \subseteq G(T)=T$. Since $\operatorname{fix}(G)=G_{n}$ for some $n \in \mathbb{N}$, we can conclude that $\operatorname{fix}(G) \subseteq T$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}, G_{n} \subseteq T$ by induction on n. In the base case, $n=0$, we have that $G_{0}=\emptyset \subseteq T$. In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_{n}=G\left(G_{n-1}\right) \subseteq G(T)=T$. Since $\operatorname{fix}(G)=G_{n}$ for some $n \in \mathbb{N}$, we can conclude that $\operatorname{fix}(G) \subseteq T$.

Corollary
fix (G) is the smallest subset T of S such that $G(T)=T$.

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

F is monotone.

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

F is monotone.

Proof

Let $T, U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in \operatorname{Sat}(g)$ or $s \in \operatorname{Sat}(f)$ and $\operatorname{succ}(s) \cap T=\emptyset$. We distinguish two cases. If $s \in \operatorname{Sat}(g)$ then $s \in F(U)$. If $s \in \operatorname{Sat}(f)$ and $\operatorname{succ}(s) \cap T=\emptyset$ then $\operatorname{succ}(s) \cap U=\emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

Model checking CTL

```
Sat(f):
switch (f) {
case a :
case f}\wedgeg: return Sat(f)\cap\operatorname{Sat}(g
case \negf: return S\Sat(f)
case }\exists\bigcircf:\quadreturn {s\inS|\operatorname{succ}(s)\cap\operatorname{Sat}(f)\not=\emptyset
case }\forall\bigcircf:\quadreturn {s\inS|\operatorname{succ}(s)\subseteq\operatorname{Sat}(f)
case }\exists(f\cupg) : T=
    while T\not=F(T)
    T=F(T)
    return T
case }\forall(fUg):..
}
```


Model checking CTL

$$
\begin{aligned}
& \text { case } \exists(f \cup g): \\
& E=S a t(g) \\
& T=E \\
& \text { while } E \neq \emptyset \\
& \text { let } t \in E \\
& E=E \backslash\{t\} \\
& \text { for all } s \in \operatorname{pred}(t) \\
& \text { if } s \in \operatorname{Sat}(f) \backslash T \\
& E=E \cup\{s\} \\
& T=T \cup\{s\} \\
& \text { return } T
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall(f U g))$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall(f \cup g))$?

Answer

The set $\operatorname{Sat}(\forall(f \cup g))$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \subseteq T\}
$$

Size of a CTL formula

$$
\begin{aligned}
|a| & =1 \\
|f \wedge g| & =1+|f|+|g| \\
|\neg f| & =1+|f| \\
|\exists \bigcirc f| & =1+|f| \\
|\exists(f \cup g)| & =1+|f|+|g| \\
|\forall \bigcirc f| & =1+|f| \\
|\forall(f \cup g)| & =1+|f|+|g|
\end{aligned}
$$

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $O((N+K)|f|)$.

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $O((N+K)|f|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula g, the model checking problem $T S \models f$ can be decided in time $O\left((N+K) 2^{|g|}\right)$.

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system $T S$, with N states and K transitions, and a CTL formula f, the model checking problem $T S \models f$ can be decided in time $O((N+K)|f|)$.

Theorem

For a transition system $T S$, with N states and K transitions, and a LTL formula g, the model checking problem $T S \models f$ can be decided in time $O\left((N+K) 2^{|g|}\right)$.

Theorem

If $\mathrm{P} \neq \mathrm{NP}$ then there exist LTL formulas g_{n} whose size is a polynomial in n, for which equivalent CTL formulas exist, but not of size polynomial in n.

Course evaluation

The course evaluation for this course can now be completed at https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete the course evaluation. Your feedback allows me to improve the course for future students.

Since 13 students have already completed the evaluation, I will bring cup cakes for the last lecture.

