Model Checking CTL EECS 4315

www.eecs.yorku.ca/course/4315/

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Basic idea

Compute Sat(f) by recursion on the structure of f.

 $TS \models f \text{ iff } I \subseteq Sat(f).$

Alternative view

Label each state with the subformulas of f that it satisfies.

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

$$Sat(f \land g) = Sat(f) \cap Sat(g)$$

$$Sat(\neg f) = S \setminus Sat(f)$$

$$Sat(\exists \bigcirc f) = \{ s \in S \mid succ(s) \cap Sat(f) \neq \emptyset \}$$

$$Sat(\forall \bigcirc f) = ?$$

$$Sat(\exists (f \cup g)) = ?$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\forall \bigcirc f)$?

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\forall \bigcirc f)$?

Answer

$$Sat(\forall \bigcirc f) = \{ s \in S \mid succ(s) \subseteq Sat(f) \}.$$

Alternative view

Labels those states, with all direct successors labelled with f, with $\forall \bigcirc f$.

$\forall \bigcirc \mathsf{red}$

$\forall \bigcirc \mathsf{red}$

$$1 \mapsto \{ \forall \bigcirc \mathsf{red} \}$$
$$2 \mapsto \{\mathsf{red}, \forall \bigcirc \mathsf{red} \}$$
$$3 \mapsto \{\mathsf{red}\}$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\exists (f \cup g))$?

$$s \in Sat(\exists (f \cup g))$$

iff $s \models \exists (f \cup g)$
iff $\exists p \in Paths(s) : p \models f \cup g$
iff $\exists p \in Paths(s) : \exists i \ge 0 : p[i] \models g \land \forall 0 \le j < i : p[j] \models f$
iff $\exists p \in Paths(s) : p[0] \models g \lor (\exists i \ge 1 : p[i] \models g \land \forall 0 \le j < i : p[j] \models f)$
iff $\exists p \in Paths(s) : p[0] \models g \lor$
 $(p[0] \models f \land \exists i \ge 1 : p[i] \models g \land \forall 1 \le j < i : p[j] \models f)$
iff $s \models g \lor (s \models f \land \exists s \rightarrow t : t \models \exists (f \cup g))$
iff $s \in Sat(g) \lor (s \in Sat(f) \land \exists t \in succ(s) : t \in Sat(\exists (f \cup g))))$
iff $s \in Sat(g) \cup \{s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \ne \emptyset\}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

 $T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

$$T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

The set $Sat(\exists (f \cup g))$ is the smallest subset T of S such that

 $T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

$$T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

The set $Sat(\exists (f \cup g))$ is the smallest subset T of S such that

$$T = Sat(g) \cup \set{s \in Sat(f) \mid succ(s) \cap T \neq \emptyset}$$

Question

Does such a smallest subset exist?

A function $G: 2^S \rightarrow 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

A function $G: 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^S \to 2^S$ is monotone, then there exists a smallest $T \in 2^S$ such that G(T) = T.

A function $G: 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^S \to 2^S$ is monotone, then there exists a smallest $T \in 2^S$ such that G(T) = T.

This smallest $T \in 2^{S}$ is known as the *least fixed point* of *G*.

- Polish mathematician
- Received his Ph.D. degree from University of Warsaw
- Proved his fixed point theorem in 1928

Source: Konrad Jacobs

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \left\{ egin{array}{cc} \emptyset & ext{if } n=0 \ G(G_{n-1}) & ext{otherwise} \end{array}
ight.$$

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \left\{ egin{array}{cc} \emptyset & ext{if } n=0 \ G(G_{n-1}) & ext{otherwise} \end{array}
ight.$$

Proposition

For all $n \in \mathbb{N}$, $G_n \subseteq G_{n+1}$.

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \begin{cases} \emptyset & \text{if } n = 0\\ G(G_{n-1}) & \text{otherwise} \end{cases}$$

Proposition

For all $n \in \mathbb{N}$, $G_n \subseteq G_{n+1}$.

Proof

We prove this by induction on n. In the base case, n = 0, we have that

$$G_0 = \emptyset \subseteq G_1$$

In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq G_n$. Since G is monotone, we have that

$$G_n = G(G_{n-1}) \subseteq G(G_n) = G_{n+1}.$$

 $G_n = G_{n+1}$ for some $n \in \mathbb{N}$.

 $G_n = G_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that *S* contains *m* elements. Towards a contradiction, assume that $G_n \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_n \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_n contains at least *n* elements. Therefore, G_{m+1} contains more elements than *S*. This contradicts that $G_{m+1} \subseteq S$.

 $G_n = G_{n+1}$ for some $n \in \mathbb{N}$.

Proof

Suppose that *S* contains *m* elements. Towards a contradiction, assume that $G_n \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_n \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_n contains at least *n* elements. Therefore, G_{m+1} contains more elements than *S*. This contradicts that $G_{m+1} \subseteq S$.

We denote the G_n with $G_n = G_{n+1}$ by fix(G).

For all $T \subseteq S$, if G(T) = T then $fix(G) \subseteq T$.

For all
$$T \subseteq S$$
, if $G(T) = T$ then $fix(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $G_n \subseteq T$ by induction on n. In the base case, n = 0, we have that $G_0 = \emptyset \subseteq T$. In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_n = G(G_{n-1}) \subseteq G(T) = T$. Since $fix(G) = G_n$ for some $n \in \mathbb{N}$, we can conclude that $fix(G) \subseteq T$.

For all
$$T \subseteq S$$
, if $G(T) = T$ then $fix(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $G_n \subseteq T$ by induction on n. In the base case, n = 0, we have that $G_0 = \emptyset \subseteq T$. In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_n = G(G_{n-1}) \subseteq G(T) = T$. Since $fix(G) = G_n$ for some $n \in \mathbb{N}$, we can conclude that $fix(G) \subseteq T$.

Corollary

fix(G) is the smallest subset T of S such that G(T) = T.

The function $F: 2^S \to 2^S$ is defined by

 $F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

Smallest subset

Definition

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

F is monotone.

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

F is monotone.

Proof

Let T, $U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in Sat(g)$ or $s \in Sat(f)$ and $succ(s) \cap T = \emptyset$. We distinguish two cases. If $s \in Sat(g)$ then $s \in F(U)$. If $s \in Sat(f)$ and $succ(s) \cap T = \emptyset$ then $succ(s) \cap U = \emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

```
Sat(f):
switch (f) {
                          return \{s \in S \mid a \in \ell(s)\}
case a :
                          return \operatorname{Sat}(f) \cap \operatorname{Sat}(g)
case f \wedge g :
case \neg f :
                          return S \setminus \operatorname{Sat}(f)
case \exists \bigcirc f : return \{s \in S \mid \text{succ}(s) \cap \text{Sat}(f) \neq \emptyset\}
case \forall \bigcirc f : return \{s \in S \mid \text{succ}(s) \subseteq \text{Sat}(f)\}
case \exists (f \cup g) : T = \emptyset
                          while T \neq F(T)
                             T = F(T)
                          return T
case \forall (f \cup g) : \dots
}
```

```
case \exists (f \cup g) :
  E = Sat(g)
  T = E
  while E \neq \emptyset
     let t \in E
     E = E \setminus \{t\}
     for all s \in pred(t)
        if s \in Sat(f) \setminus T
          E = E \cup \{s\}
           T = T \cup \{s\}
  return T
```

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\forall (f \cup g))$?

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\forall (f \cup g))$?

Answer

The set $Sat(\forall (f \cup g))$ is the smallest subset T of S such that

 $T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \subseteq T \}$

Size of a CTL formula

$$|a| = 1$$

$$|f \land g| = 1 + |f| + |g|$$

$$|\neg f| = 1 + |f|$$

$$|\exists \bigcirc f| = 1 + |f|$$

$$|\exists (f \cup g)| = 1 + |f| + |g|$$

$$|\forall \bigcirc f| = 1 + |f|$$

$$|\forall (f \cup g)| = 1 + |f| + |g|$$

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time O((N + K)|f|).

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time O((N + K)|f|).

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula *g*, the model checking problem $TS \models f$ can be decided in time $O((N + K)2^{|g|})$.

The complexity of CTL model checking

By improving the model checking algorithm (see, for example, the textbook of Baier and Katoen for details), we obtain

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a CTL formula *f*, the model checking problem $TS \models f$ can be decided in time O((N + K)|f|).

Theorem

For a transition system *TS*, with *N* states and *K* transitions, and a LTL formula *g*, the model checking problem $TS \models f$ can be decided in time $O((N + K)2^{|g|})$.

Theorem

If $P \neq NP$ then there exist LTL formulas g_n whose size is a polynomial in n, for which equivalent CTL formulas exist, but not of size polynomial in n.

The course evaluation for this course can now be completed at https://courseevaluations.yorku.ca

I would really appreciate it if you would take the time to complete the course evaluation. Your feedback allows me to improve the course for future students.

Since 13 students have already completed the evaluation, I will bring cup cakes for the last lecture.