Mini models EECS 4315

wiki.eecs.yorku.ca/course/4315/

Mini

source: Keld Gydum

Mini

source: Mike Bird

$$
00000^{000000}
$$

Mini model

Hello World!

```
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello World");
    }
}
```


Hello World!

Hello World!

target=HelloWorld
classpath=.
listener=gov.nasa.jpf.listener.StateSpaceDot vm.max_transition_length=1

Hello World!

[^0]
Hello World!

One choice

```
Random random = new Random();
if (random.nextBoolean()) {
    System.out.println("1");
} else {
    System.out.println("2");
}
```


One choice

target=OneChoice
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot

One choice

One choice

target=OneChoice
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot vm.max_transition_length=1

One choice

[^1]```
Random random = new Random();
if (random.nextBoolean()) {
 if (random.nextBoolean()) {
 System.out.println("1");
 } else {
 System.out.println("2");
 }
} else {
 if (random.nextBoolean()) {
 System.out.println("3");
 } else {
 System.out.println("4");
 }
}
```


## Two choices

target=TwoChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot

target=TwoChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot vm.max_transition_length=1

Two choices


## Many choices

```
Random random = new Random();
byte value = 0;
while (random.nextBoolean()) {
 value++;
}
System.out.println(value);
```


## Many choices

## Question

How many different executions does the app ManyChoices have?

## Many choices

## Question

How many different executions does the app ManyChoices have?

Answer<br>Infinitely many.

## Many choices

## Question

How many different executions does the app ManyChoices have?

```
Answer
Infinitely many.
```


## Question

How many different states does JPF encounter?

## Many choices

## Question

How many different executions does the app ManyChoices have?
Answer
Infinitely many.

## Question

How many different states does JPF encounter?

## Answer 257.

## Not so many choices

```
Random random = new Random();
byte value = 0;
while (random.nextBoolean()) {
 value = (byte) ((value + 1) % 5);
}
System.out.println(value);
```


## Not so many choices

## Question

How many different executions does the app ManyChoices have?

## Not so many choices

## Question

How many different executions does the app ManyChoices have?

Answer<br>Infinitely many.

## Not so many choices

## Question

How many different executions does the app ManyChoices have?

```
Answer
Infinitely many.
```


## Question

How many different states does JPF encounter?

## Not so many choices

## Question

How many different executions does the app ManyChoices have?
Answer
Infinitely many.

## Question

How many different states does JPF encounter?

## Answer <br> 6.

## Not so many choices

target=NotSoManyChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot

## Not so many choices

$$
\begin{aligned}
& ==========================================================s \text { seas } \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

## Not so many choices



## Not so many choices

target=NoSoManyChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener. StateSpaceDot
vm.max_transition_length=1

## Not so many choices



Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


Not so many choices


## Not so many choices

Question
Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

## Not so many choices

Question
Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

## Answer

Depth-first search of a directed graph.

## Not so many choices

## Question

Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

## Answer

Depth-first search of a directed graph.

A labelled transition system is similar to a directed graph.
state vertex
transition edge

## Depth-first search

## Question

Why do we have to keep track of the vertices that have been visited in depth-first search?

## Depth-first search

## Question

Why do we have to keep track of the vertices that have been visited in depth-first search?

## Answer

To ensure that the traversal terminates.

## Depth-first search

## Question

Why do we have to keep track of the vertices that have been visited in depth-first search?

## Answer

To ensure that the traversal terminates.

Similarly, when model checking we need to keep track of the states that have already been visited.

Write a recursive method that for a given depth $d$ chooses an integer in the range $1-2^{d}$ uniformly at random using random.nextBoolean. Hint: provide the method with an additional parameter.


## Number of states

target=Choice
target.args=2
classpath=.

## Number of states

| $d$ | number of states |
| :--- | :--- |
| 0 | 35 |
| 1 | 36 |
| 2 | 38 |
| 3 | 42 |
| 4 | 50 |
| 5 | 66 |
| 10 | 1,058 |
| 20 | $1,048,610$ |

## Number of states

| $d$ | number of states |
| :--- | :--- |
| 0 | 35 |
| 1 | 36 |
| 2 | 38 |
| 3 | 42 |
| 4 | 50 |
| 5 | 66 |
| 10 | 1,058 |
| 20 | $1,048,610$ |

## Question

Can you express the number of states in terms of $d$ ?

## Number of states

| $d$ | number of states |
| :--- | :--- |
| 0 | 35 |
| 1 | 36 |
| 2 | 38 |
| 3 | 42 |
| 4 | 50 |
| 5 | 66 |
| 10 | 1,058 |
| 20 | $1,048,610$ |

## Question

Can you express the number of states in terms of $d$ ?

## Answer $2^{d}+34$.

## Model



## Mini model



## Question

What do the model and the mini model in common?

## Question

What do the model and the mini model in common?

## Answer

- The initial state.
- The final states.
- The branching structure.
- The language: (finite and infinite) sequences of actions. ${ }^{a}$
${ }^{\text {a }}$ Similar to the language accepted by a finite automaton, as discussed in EECS 2001 Introduction to Theory of Computation.

Model


## Model



## Question

Which is the initial state?

## Model



## Question

Which is the initial state?

Answer
State 0.

## Model



## Question

Which are the final states?

## Model



## Question

Which are the final states?

Answer
State 5.

## Model



## Question

Which are the branching states?

## Model



## Question

Which are the branching states?

## Answer

State 2.

## Model



Question
What is the language?


## Question

What is the language?

## Answer <br> $\{a b c e, a b d f\}$.

## Mini model

Question
What is the corresponding mini model?

## Mini model

## Question

What is the corresponding mini model?


Model


## Model



## Question

Which is the initial state?

## Model



## Question

Which is the initial state?

Answer
State 0.

## Model



## Question

Which are the final states?

## Model



## Question

Which are the final states?

## Answer

There are none.

## Model



Question
Which are the branching states?

## Model



## Question

Which are the branching states?

Answer
There are none.

## Model



Question
What is the language?

## Model



Question
What is the language?

## Answer

\{abcabcabc...\}.

## Mini model

## Question

What is the corresponding mini model?

## Mini model

## Question

What is the corresponding mini model?


Model


## Model



Question
Which is the initial state?

## Model



Question
Which is the initial state?

## Answer

State 0.

## Model



Question
Which are the final states?

## Model



Question
Which are the final states?

## Answer

State 4.

## Model



## Question

Which are the branching states?

## Model



## Question

Which are the branching states?

Answer
State 0.

## Model



## Question

What is the language?

## Model



## Question

What is the language?

## Answer

$\{d e, ~ a b c d e, ~ a b c a b c d e, \ldots, a b c a b c a b c \ldots\}$.

## Mini model

Question
What is the corresponding mini model?

## Mini model

## Question

What is the corresponding mini model?


Model


## Model



## Question

Which is the initial state?

## Model



## Question

Which is the initial state?

Answer
State 0.

## Model



## Question

Which are the final states?

## Model



## Question

Which are the final states?

Answer
State 4.

## Model



Question
Which are the branching states?

## Model



## Question

Which are the branching states?

Answer
State 2.

## Model



Question
What is the language?

## Model



## Question

What is the language?

## Answer

\{abd, abcebd, abcebcebd, ..., abcebcebce ...\}.

## Mini model

## Question <br> What is the corresponding mini model?

## Mini model

## Question

What is the corresponding mini model?



[^0]:    ========================================================3 sta1 elapsed time: 00:00:02 states: new=35, visited=0, backtracked=35, end=1
    search: maxDepth=35, constraints=0
    choice generators: thread=35 (signal=0,lock=1,sharedRef=0, heap: new $=348$, released=11, maxLive=331, gcCycles $=$
    instructions: 3198
    max memory:
    61MB
    loaded code: classes=56,methods=1220
    

[^1]:    

