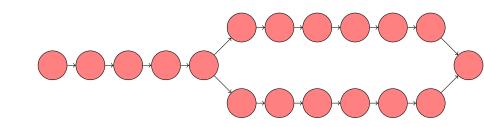
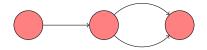
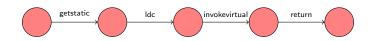
Mini models EECS 4315

wiki.eecs.yorku.ca/course/4315/


Mini


source: Keld Gydum


source: Mike Bird

Mini model


```
public class HelloWorld {
  public static void main(String[] args) {
    System.out.println("Hello World");
  }
}
```



```
target=HelloWorld
classpath=.
listener=gov.nasa.jpf.listener.StateSpaceDot
vm.max_transition_length=1
```

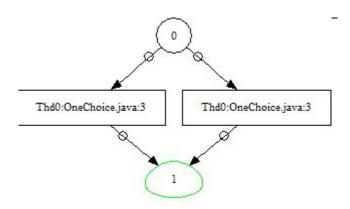
elapsed time: 00:00:02

states: new=35, visited=0, backtracked=35, end=1

search: maxDepth=35,constraints=0

choice generators: thread=35 (signal=0,lock=1,sharedRef=0,heap: new=348,released=11,maxLive=331,gcCycles=

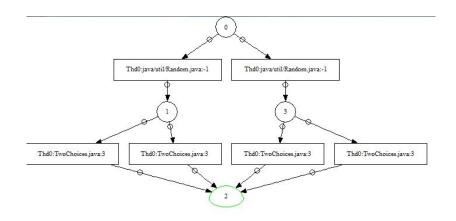
instructions: 3198
max memory: 61MB


loaded code: classes=56,methods=1220

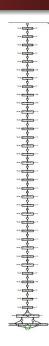
----- sear


```
Random random = new Random();
if (random.nextBoolean()) {
   System.out.println("1");
} else {
   System.out.println("2");
}
```

```
target=OneChoice
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
```




```
target=OneChoice
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
vm.max_transition_length=1
```




```
Random random = new Random();
if (random.nextBoolean()) {
 if (random.nextBoolean()) {
   System.out.println("1");
 } else {
   System.out.println("2");
} else {
 if (random.nextBoolean()) {
   System.out.println("3");
 } else {
   System.out.println("4");
```

```
target=TwoChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
```



```
target=TwoChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
vm.max_transition_length=1
```



```
Random random = new Random();
byte value = 0;
while (random.nextBoolean()) {
  value++;
}
System.out.println(value);
```

Question

How many different executions does the app ManyChoices have?

Question

How many different executions does the app ManyChoices have?

Answer

Infinitely many.

Question

How many different executions does the app ManyChoices have?

Answer

Infinitely many.

Question

How many different states does JPF encounter?

Question

How many different executions does the app ManyChoices have?

Answer

Infinitely many.

Question

How many different states does JPF encounter?

Answer

257.

```
Random random = new Random();
byte value = 0;
while (random.nextBoolean()) {
  value = (byte) ((value + 1) % 5);
}
System.out.println(value);
```

Question

How many different executions does the app ManyChoices have?

Question

How many different executions does the app ManyChoices have?

Answer

Infinitely many.

Question

How many different executions does the app ManyChoices have?

Answer

Infinitely many.

Question

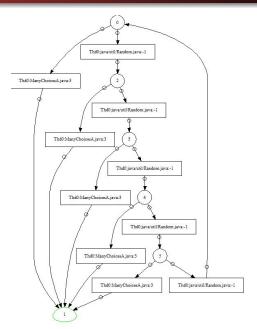
How many different states does JPF encounter?

Question

How many different executions does the app ManyChoices have?

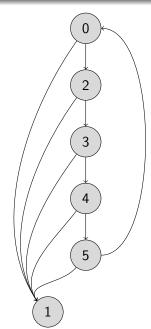
Answer

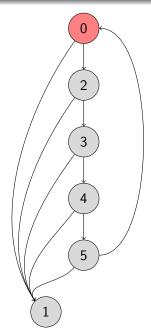
Infinitely many.

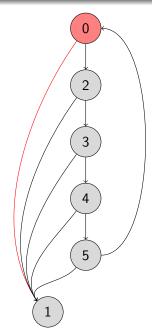

Question

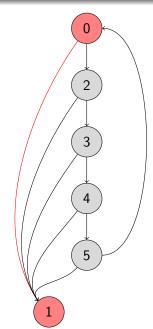
How many different states does JPF encounter?

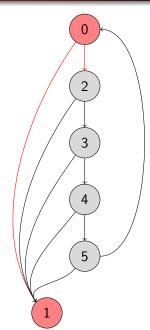
Answer

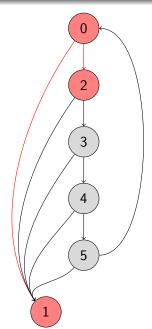

6.

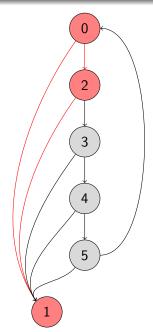

```
target=NotSoManyChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
```

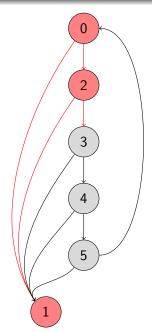


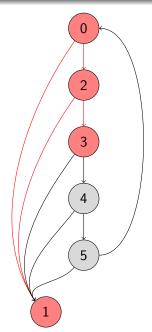

```
target=NoSoManyChoices
classpath=.
cg.enumerate_random=true
listener=gov.nasa.jpf.listener.StateSpaceDot
vm.max_transition_length=1
```

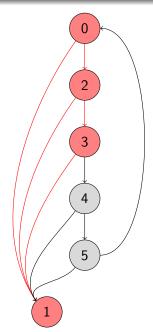


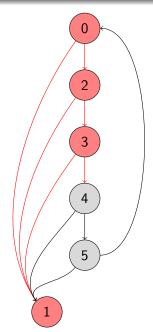


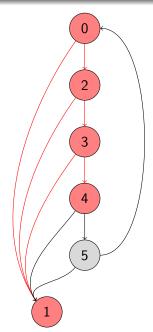


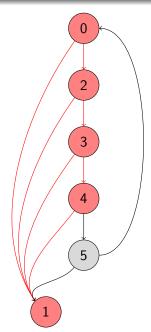


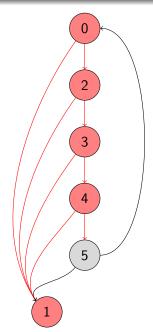


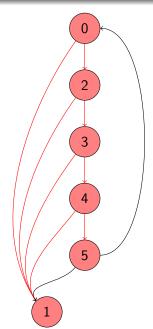


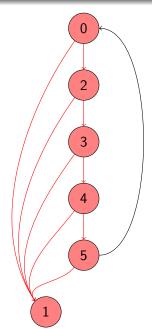


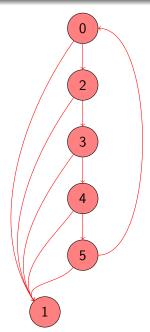












Question

Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

Question

Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

Answer

Depth-first search of a directed graph.

Question

Does this remind you of an algorithm you have seen in the course EECS 2011 Fundamentals of Data Structures and EECS 3101 Design and Analysis of Algorithms?

Answer

Depth-first search of a directed graph.

A labelled transition system is similar to a directed graph.

state vertex transition edge

Depth-first search

Question

Why do we have to keep track of the vertices that have been visited in depth-first search?

Depth-first search

Question

Why do we have to keep track of the vertices that have been visited in depth-first search?

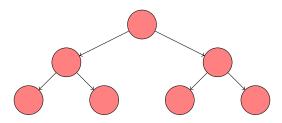
Answer

To ensure that the traversal terminates.

Depth-first search

Question

Why do we have to keep track of the vertices that have been visited in depth-first search?


Answer

To ensure that the traversal terminates.

Similarly, when model checking we need to keep track of the states that have already been visited.

Exercise

Write a recursive method that for a given depth d chooses an integer in the range $1-2^d$ uniformly at random using random.nextBoolean. Hint: provide the method with an additional parameter.

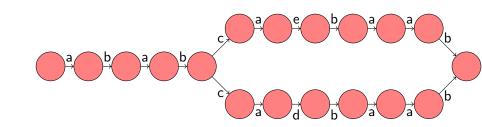

```
target=Choice
target.args=2
classpath=.
```

d	number of states
0	35
1	36
2	38
3	42
4	50
5	66
10	1,058
20	1,048,610

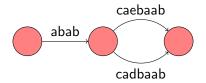
d	number of states
0	35
1	36
2	38
3	42
4	50
5	66
10	1,058
20	1,048,610

Question

Can you express the number of states in terms of d?


d	number of states
0	35
1	36
2	38
3	42
4	50
5	66
10	1,058
20	1,048,610

Question


Can you express the number of states in terms of d?

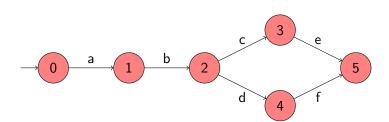
Answer

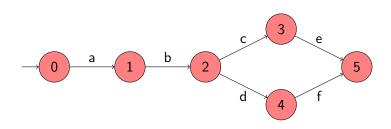
 $2^d + 34$.

Mini model

Question

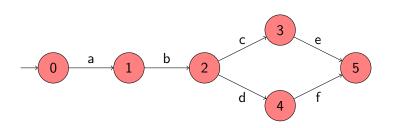
What do the model and the mini model in common?


Question


What do the model and the mini model in common?

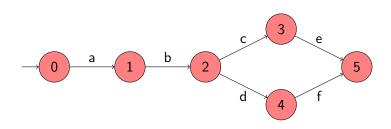
Answer

- The initial state.
- The final states.
- The branching structure.
- The language: (finite and infinite) sequences of actions.^a


^aSimilar to the language accepted by a finite automaton, as discussed in EECS 2001 Introduction to Theory of Computation.

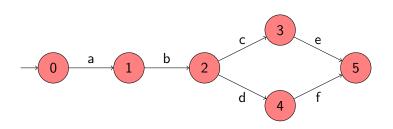
Question

Which is the initial state?



Question

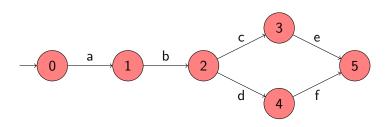
Which is the initial state?


Answer

State 0.

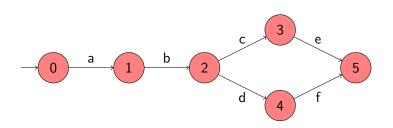
Question

Which are the final states?



Question

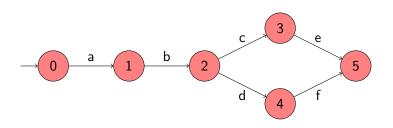
Which are the final states?


Answer

State 5.

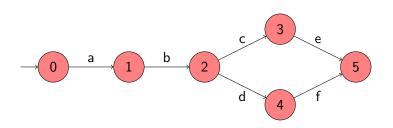
Question

Which are the branching states?



Question

Which are the branching states?

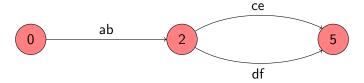

Answer

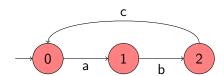
State 2.

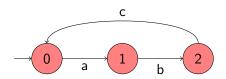
Question

What is the language?

Question

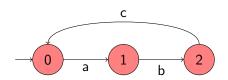

What is the language?


Answer


 $\{abce, abdf\}.$

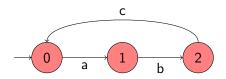
Question

Question



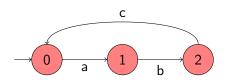
Question

Which is the initial state?



Question

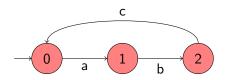
Which is the initial state?


Answer

State 0.

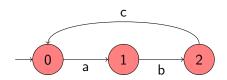
Question

Which are the final states?



Question

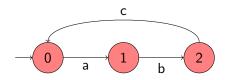
Which are the final states?


Answer

There are none.

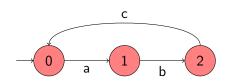
Question

Which are the branching states?



Question

Which are the branching states?


Answer

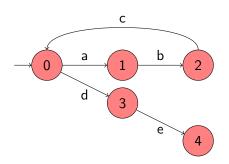
There are none.

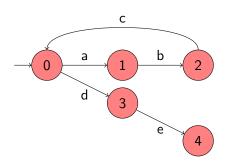
Question

What is the language?

Question

What is the language?


Answer

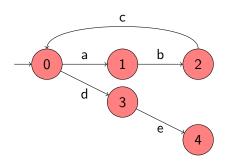

{abcabcabc . . .}.

Question

Question

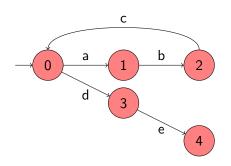
Question

Which is the initial state?



Question

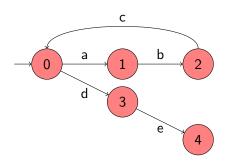
Which is the initial state?


Answer

State 0.

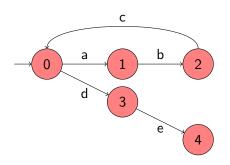
Question

Which are the final states?



Question

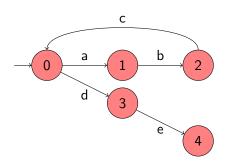
Which are the final states?


Answer

State 4.

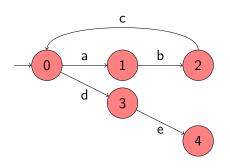
Question

Which are the branching states?



Question

Which are the branching states?

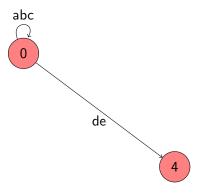

Answer

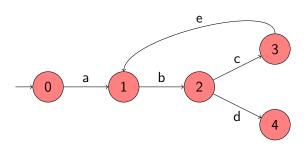
State 0.

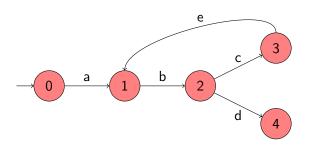
Question

What is the language?

Question

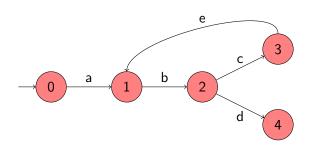

What is the language?


Answer


 $\{de, abcde, abcabcde, \dots, abcabcabc \dots\}.$

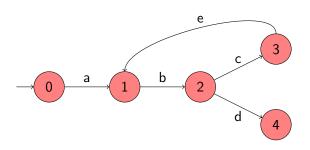
Question

Question



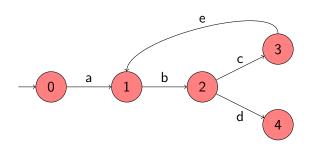
Question

Which is the initial state?



Question

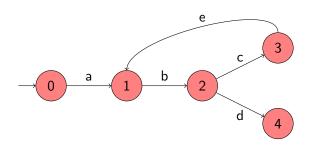
Which is the initial state?


Answer

State 0.

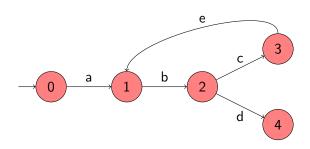
Question

Which are the final states?



Question

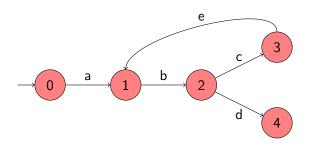
Which are the final states?


Answer

State 4.

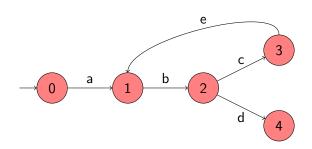
Question

Which are the branching states?



Question

Which are the branching states?

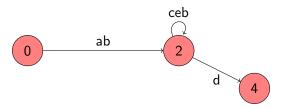

Answer

State 2.

Question

What is the language?

Question


What is the language?

Answer

 $\{abd, abcebd, abcebcebd, \ldots, abcebcebce \ldots\}.$

Question

Question

