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Machine Learning Framework

Data Feature | Model
in-domain compact generative
representative VS
the more discriminative
the better

feature engineering



Outline

The curse of dimensionality
Feature Extraction
Linear:
« Principal Component Analysis (PCA)
« Linear Discriminant Analysis (LDA)
Nonlinear (manifold learning):

e Multi-Dimensional Scaling (MDS)

Stochastic Neighbourhood Embedding (SNE)

Locally Linear Embedding (LLE)

IsoMap

e Neural Network Bottlenecks

Data Virtualization



The Curse of the Dimensionality

Feature engineering ==> high-dimension feature vectors
“The curse of the dimensionality”

Highly correlated among dimensions

Distance in high-dimension space is error-prone

Intuitions fail in high dimensions:

e High-D Gaussian distribution: most mass not near mean
e Most mass of a high-D sphere is in the surface

e Most points in high-D cube/sphere is more closer to the surface than
their closest neighbours



Dimension Reduction

X e R?l

Forms of the mapping function

fG):R* = R™ (m < n)

Criterion to learn f(.):

« PCA; LDA

e linear function: y = Ax + b e Manifold learning

« nonlinear function: piecewise « Bottleneck: auto-encoder
linear functions, neural networks



Principal Component Analysis (PCA)

Z Two equivalent explanations:

1. Maximum variance formulation

e 2. Minimum-error formulation



Principal Component Analysis (PCA)

= A little math: maximize variance in linear projection

the variance of the projected data is given by
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S is the data covariance matrix defined by



Principal Component Analysis (PCA)

Variance (energy) distribution among principal components

o _ variance (energy) along dimensions after PCA
high-dimension data
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Applications of PCA

- Dimensionality reduction

~ Reconstruct high-dimension data from the lower-dimension PCA features
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Linear Discriminant Analysis (LDA)

Fisher's linear discriminant: maximize the class separation

Supervised dimensionality reduction: needs class labels

3-class featu re data

. Good class separation
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Linear Discriminant Analysis (LDA)

Fisher's linear discriminant: maximize the class separation using within-class and
between-class covariance matrices

maximizing a ratio defined as:




Related Work

Probabilistic PCA (PPCA) (Tipping & Bishop, 1999a)

Bayesian PCA, Kernel PCA, Sparse PCA

Mixture of PPCA (Tipping & Bishop, 1999b)

Factor Analysis

Heteroscedastic LDA (HLDA/HDA) (Kumar & Andreous, 1998)
Independent Component Analysis (ICA) (Hyvarinen & QOja, 2000)

Projection Pursuit (Friedman & Tukey, 1974)



Manifold Learning: nonlinear dimensionality reduction

If we measure distances
along the manifold,
d(1,6) > d(1,4)
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Multi-Dimensional Scaling (MDS)

Preserve between-object distances as much as possible
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Stochastic Neighbourhood Embedding (SNE)

- A probabilistic local mapping method
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Locally Linear Embedding (LLE)

Maps that preserve local geometry: local configurations of
points in the low-dimensional space resemble the local
configurations in the high-dimensional space.

- Represent a point as a weighted average of nearby points, the
weights describe the local configuration:

X; =), WX
j

- Use the data points in high-dimension to determine the local
weights, then try to re-construct them from its neighbours in low-

dimension.
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IsoMap: Local MDS without local optima

Connect each datapoint to its K
nearest neighbours in the high-
dimensional space.

Put the true Euclidean distance B
on each of these links.

Then approximate the manifold

distance between any pair of
points as the shortest path in
this “neighbour graph’.



Data Virtualization

..........

o

D or 3D space for virtualization

- Project data into 2

Popular approaches:

ith
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t-SNE:
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Isomap: h
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