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Statistical Data Modeling

® For any real problem, the true p.d.f.” s are always unknown, neither the
forms of the functions nor the parameters.

® QOur approach — statistical data modeling : based on the available
sample data set, choose a proper statistical model to fit into the
available data set.

— Data Modeling stage: once the statistical model is selected, its
function form becomes known except the set of model parameters
associated with the model are unknown to us.

— Learning (training) stage: the unknown parameters can be
estimated by fitting the model into the data set based on certain
estimation criterion.

e the estimated statistical model (assumed model format +
estimated parameters) will give a parametric p.d.f. to
approximate the real but unknown p.d.f. of each class.

— Decision (test) stage: the estimated p.d.f.” s are plugged into the
optimal Bayes decision rule in place of the real p.d.f.”s

= plug-in MAP decision rule
e Not optimal any more but performs reasonably well in practice




Statistical Models: roadmap

Gaussian

1-d
(1-d) =) GMM = CDHMM

Multivariate

Gaussian
Continuous data Graphical

: : i) Estimation:
Multinomial ML, Bayesian, DT
\ Mixture of )
Multinomial ii) Inference




Model Parameter Estimation
®* Maximum Likelihood (ML) Estimation:
— Objective function: likelihood function of all observed data
— ML method: most popular model estimation; simplest
— EM (Expected-Maximization) algorithm
— Examples:
e Univariate Gaussian distribution
e Multivariate Gaussian distribution
e Multinomial distribution
e Gaussian Mixture model (GMM)
e Markov chain model
e Hidden Markov Model (HMM)
®* Bayesian Model Estimation
— The MAP (maximum a posteriori) estimation (point estimation)

— General Bayesian theory for parameter estimation

— Recursive Bayes Learning (Sequential Bayesian learning)




Maximum Likelihood (ML) Estimation

>

Generative models for classification {w1, - ,wk}:

> Prior probabilities: Pr(wy) (k=1,---,K)
» Class-dependent distribution: p(x|wg) (k=1,---,K)

Collect training data for each class: Dy ~ p(x|ws)

Density estimation: estimate the probability distribution
from fine samples

Select probabilistic models: py, (x) ~ p(x|wk)

Maximum likelihood (ML) Estimation: learn py, (x) to
maximize the probability of observing the training data D,

0, = argn%axﬁgk(Dk) (k=1,--- | K)

k

ML estimation: fit data best; best interpret the observed data



Maximum Likelihood (ML) Estimation

» Drop index k and p(-) — p(-), ML estimation turns to be:

HML — arg m@aXpQ(D) — arg m@axpg(xl, X2yt 7XN)
where D = {x1,X2, - , XN}

» Assume all data are i.i.d. (independent and identically
distributed), i.e., all samples are drawn independently from
the same distribution:

N
p@(XhXQ) to e 7XN) — H pQ(Xz)
i=1
» Why called maximum likelihood (not probability)?

> pp(x): data distribution of various x if 6 is given (fixed)
» pg(x): likelihood function of @ if x is given (fixed)



Maximum Likelihood (ML) Estimation

» In many cases, it is more convenient to work with the
logarithm of the likelihood rather than the likelihood itself

» Denote the log-likelihood function [(68) = In pg(D), we have

N
O = arg max [(0) = arg max ;lnpg(xi)

» Optimization methods for ML estimation:

» Differential calculus for simple models, e.g., single
univariate/multivariate Gaussian, ...

» Lagrange optimization for models with constraints, e.g.,
multinomial, markov chain, ...

» Expectation-Maximization (EM) method for mixture models,

e.g., Gaussian mixture models (GMM), hidden Markov models
(HMM), ...



Univariate Gaussian (with known variance)

» The training set: D = {x1,x2,--- ,zn} (a set of scalars)
> A univariate Gaussian (with known variance):
, 1 _ (o)
po(x) = N(z|p, 05) = e 7

\/ 2#08

» The log-likelihood function:

N 2

N 2 . —
[(1) = Zlnpe(ibz‘) =) {— m(2mp) _ (i~ 1) ]

2
P 2 20

» ML estimate of the unknown Gaussian mean is the sample
mean:

N
di(p) 1
R DI



Multivariate Gaussian ()

> The training set: D = {x1,Xo,--- ,xx} (each vector € R%)

» Choose to model D with a multivariate Gaussian distribution:

1 _ (x=) T x—p)

pu,Z(X) — (27T)d/2’2‘1/26 :

» Assume mean vector o and covariance matrix X are unknown

» The log-likelihood function:

N
l(/,L,E) — Zlnpu,Z(Xi)
=1

N 1

_ _ )T (s



Multivariate Gaussian (1)

N N
81([1,, Z) 1 1
o :Oj;E (Xz—u):OjuML—NZﬂXZ
Al(w,Y
(auz l=0 =
N 1 N
~S N 4 SEN T D - )k — w)T[(5) 7 =0
i=1
| N
—> gL = Z(Xz — HML)(Xi MML)T
i=1
Note that

a%(XTA_ly) — (AT) " lxyT(AT)"! (square A)

9 (1n]A]) = (A7 = (A" (square A)



Gaussian Models for K-class Pattern Classification

» Given K classes {w1, - ,wk}, we collect a training set Dy
for each class w;,

> If each feature vector is continuous (€ R?) and follows a
unimodal distribution, we may choose a multivariate Gaussian
for each class, N (x|pu®), k) (K =1,2,--- | K)

» ML estimation: D, — {Mﬁﬂﬁ),z&ﬁ)}

» Classify any unknown x using the plug-in MAP decision rule:

g(x) = arg max Pr(wg)p(x|wg) = arg max/\/'(x]u,gﬁ), E,S,ﬁ))

k k

where we may assume all priors Pr(wy) are equiprobable.



Linear and Quadratic
Discriminant Analysis

® Classification: each class is modeled by a multivariate Gaussian
® Linear Discriminant Analysis

— Two Gaussians share the same covariance matrix

— The decision surface is a linear hyperplane
® Quadratic Discriminant Analysis

— Two Gaussians have different covariance matrices

— The decision surface is a quadratic parabola

< Linear Dicrimunant Amayss ’Qt.-u*-ll-( CisCrimMmemant Analysis
. »
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Examples of ML estimation(4):
multinomial distribution (I)

®* A DNA sequence consists of a sequence of 4 different types of
nucleotides (G, A, T, C). For example,

X= GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAGTGTTTCAATACTGCTCTATC
AAAAGATGTATTCCACTCAGTTACTTTCATGCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTA
GTTTTTATGTGAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACCCTTGCAGATAC
TAGAGAAAGACTGTTTCAAAACTGCTCTATCCAAAGAACGGTTCCACTCTGTGAGGTGAATGCACACATC
ACAAAGCAGTTTCTGAGAACGCTTCTGTCTAGTTTGTAGGTGAAGATATTTCCTTTTCCTTCATAGGCCT
CTAATCGCTCCAAATATCCACAAGCAGATTCTTCAAAATGTGTGTTTCAACACTGCTCTATCAAAAGAAA
GGTTCAAGTCTGTGAGTTGAATGCACACATCACAAAGCAGTTTCTGAGAATGCCTCTGTCTAGTTTGTAT
GTGAAGATATTTCTTTTTCCGTCTTATGCCTCAAATCGCTCCAAATATCCACTTGCAGATACTTCAAAA

® If assume all nucleotides in a DNA sequence are independent, we can
use multinomial distribution to model a DNA sequence,

® Use p1 to denote probability to observe G in any one location, p2 for
A, ps for T, pa for C. .

* Obviously, it meets > 7. =1,
=1
®* Given a DNA sequence X, the probability to observe X is

4
Prx)=C-[]p"
=1




Examples of ML estimation(4):
multinomial distribution (II)
Where N1 is frequency of G appearing in X, N2 frequency of A, N3
frequency of T, N3 frequency of C.

Problem: estimate p:, p2, p3, ps» from a training sequence X based on
the maximum likelihood criterion.

®* The log-likelihood function:

l(p19p29p39p4) ZN ll’lpl

Where N1 is frequency of G in trammg sequence X, the similar for
N2, N3 and Na.

®* Maximization I(.) subject to the constraint ZPZ =1
i=1

® Use Lagrange optimization:

4 4
L(py, Pys D3> PasA) =D N, -Inp, —A(D p, —1)
i=1 i=1

%)
gL(plapzapwpml):O = N,/ p, —-A=0

i




Examples of ML estimation(4):
multinomial distribution (III)

Finally, we get the ML estimation for the multinomial distribution as:

pi — Ni (l — 1929394)

X

i=1

We only need count the occurrence times (frequency) of each
nucleotides in all training sequences, then the ML estimate can be

easily calculated as above.

Similar derivation also holds for Markov chain model.

— It has an important application in language modeling, the so-called
n-gram model.




Examples of ML estimation(5):
Markov Chain Model (I)

® Markov assumption: a discrete-time Markov chain is a
random sequence x[n] whose n-th conditional probability
function satisfy:

p(x[n] | x[n-1]x[n-2]...x[n-N]) = p(x[n] | x[n-1])

® In other words, probability of observing x|n] only depends
on its previous one x[n-1] (for 15t order Markov chain) or

the most recent history (for higher order Markov chain).

®* Parameters in Markov Chain model are a set of
conditional probability functions.




Examples of ML estimation(5):
Markov Chain Model (II)

¢ Stationary assumption:
p(x[n] | x[n-1]) = p(x[n’] | x[n"-1]) for all n and n’.

® For stationary discrete Markov Chain model:

— Only one set of conditional probability function

® Discrete observation: in practice, the range of values

taken on by each x[n] is finite, which is called state space.
Each distinct one i1s a Markov state.

— An observation of a discrete Markov chain model
becomes a sequence of Markov states.

— The set of conditional probs = transition matrix




Examples of ML estimation(5):
Markov Chain Model (III)

® Markov Chain Model (stationary & discrete):
— A finite set of Markov states, to say M states.
— A set of state conditional probabilities, i.e., transition matrix
In 15t order Markov chain model, aij = p(jli) (i,j=1,2,...,M)
® Markov Chain model can be represented by a directed graph.
— Node > Markov state

— Arc -> state transition (each arc attached with a transition
probability)

— A Markov chain observation can be viewed as a path traversing a
Markov chain model.

® Probability of observing a Markov chain can be calculated based on
the path and the transition matrix.




Examples of ML estimation(5):
Markov Chain Model (1V)

e First-order Markov Chain Model for DNA sequence

Full Transition matrix (6

’> by 6)
A ) G
’\ p(A|G) = 0.16
= p(C|G) = 0.34
| p(G|G) = 0.38
been 9 p(TIG) = 0.12

¢ ’\> One transition
probability is attached

with each arc.

Pr(GAATTC) = p(begin)p(G|begin)p(A|G)p(A|A)p(T|A)p(TIT)p(C|T)p(end|C)




Examples of ML estimation(5):
Markov Chain Model (V)

® Markov Chain Model for language modeling (n-gram)
— Each word is a Markov state, total N words (vocabulary size)
— A set of state (word) conditional probabilities
® Given any a sentence:
S = | would like to fly from New York to Toronto this Friday
® 1st-order Markov chain model: N*N conditional probabilities
Pr(S) = p(l/begin) p(would|l) p(likelwould) p(to/like) p(fly/to) ...
— This is called bi-gram model
® 2nd_order Markov chain model: N*N*N
Pr(S) = p(l/begin) p(would|l,begin) p(likelwould,l) p(to/like,would) p(fly|to,like) ...
— This is called tri-gram model
® Multinomial (Oth-order Markov chain): N probabilities

Pr(S) = p(l) p(would) p(like) p(to) p(fly) ...
— This is called uni-gram model




Examples of ML estimation(5):
Markov Chain Model (VI)

®* How to estimate Markov Chain Model from training data
— Similar to ML estimate of multinomial distribution
— Maximization of log-likelihood function with constraints.

® Results:
Frequency of W, WV, in training data
pW W)= ——
Frequency of /7, in training data
Frequency of W W W in training data
P (VVZ | VV] > Wk) — —

Frequency of W, W, in training data

® Generally, N-gram model: a large number of probabilities to be
estimated.




Gaussian mixture model (GMM)

PNASETAY

To model multi-modal distributions of x € R%, we may consider a
group of Gaussians:

M
p(X) — Z W, N(X ‘ Nmyzm)

» Mixture weights w,, satisfy 27]»\,@421 Wy, = 1,
» Mean vector and covariance matrix of m-th Gaussian
component: p,, and X,

» |f M is large enough, GMMs can approximate any arbitrary
distribution in R¢



Mixture Models

» A mixture of any simpler component distributions:

M
p(x) = 3w - fo,(x)

» Component distribution fg(x): Gaussians, multinomial,...

> In general, fg(x) is chosen from the exponential family
(e-family):

fo(x) = exp {A(}_c) + xXTA — IC()\)}

» A\ = g(0) is called natural parameters
» X = h(x) is called sufficient statistics
» K(A) is a normalization term:

Jy fo(x)dx =1 = K(A) =1n | [, (A(h(x))+(h(x))TA)dx]
» Taking logarithm — In fg(x) = A(X) + XTA — K(A)



Exponential Family (e-family)

» Most basic probabilistic models belong to e-family, including
Gaussian, Binomial, Multinomial, Bernoulli, Dirichlet, Beta,
Gamma, Von Mises, Wishart, ...

» Some examples:

fo(x) A=9(0) | x=hx) KA A(x)
Gausssian /o, 1/0°] | [z, —2°/2] AT/ A2 — 2 In(27)
N(z | p,0%) —5 log(\2)
Gaussian I Yy X SATS, A | —£1In(2n)
N(X ’ H, 20)
Gaussian ST, S | X, —axxT] | AATAS AL | —S1n(27)
N(x | 1 5) ~ A
Multinomial [In pq, .-, X 0 In(C)
C - Tl g In ]

» Products of e-family distributions still belong to e-family



ML Estimation of GMMs

» |t is not trivial to estimate GMMs and any mixture models
» Given training data D = {x1,X2, -+ , XN}

» Log-likelihood function contains log-sum:

l({wm,um,zm}) — g}ln (iwm N(x; | “mjgm))

» Can we switch log-sum into sum-log ?



Expectation-Maximization (EM) algorithm

» Log-likelihood function of mixture models:

M
[(6)=In )  wp - fo,(x)

» Treat m as a latent variable: an unobserved random variable
in {1,2,--- , M}

» Given any model 8" we may compute a conditional
probability distribution of m based on data x: Pr(m | x, 9(”))

» Define an auxiliary function of 8 as follows:

Q(016™)) = Ey|In (wn - fo,(x)) | x,6] + const

M
= Y In[wn - fo,(x)] - Pr(m | x,0") + const
m=1

M

where const = —>

In Pr(m | x, 0(”)) Pr(m | x, 9(71))



Auxiliary Function Q(0]0™) (1)

Theorem
The auxiliary function Q(0|0™)) satisfies the following three
properties:

1. Q(016™) touches 1(0) at ™) :

Q(66™)

- 1(9)‘

0—0(n) 0—0(n)

2. Q(016™) and 1(0) make a tangent touch at (™) :

2Q(610™) 21(6)

00 ‘ezmn) - 00 ‘9:9(71)

3. For all 8 # 0™, Q(0|0™) locates strictly below 1(6):

Q(016™) < 1(6) (VO # 6™



Auxiliary Function Q(0]0) (II)

The auxiliary function Q(0]0™) is related to () like this:

1

/ én))\

(") 6




Auxiliary Function Q(8]60™) (1l

Proof:

» Bayes theorem Pr(y|z) = p}g'@%) — p(z) = p(z,y)

» Apply to the model pg(m,x), we have

pe(m, x)

Pr(mix. 0) — Inpg(x) = Inpg(m,x)—InPr(m|x, 0)

pe(X) =

> Multiply Pr(m|x, 8™) to both sides, and sum over all
m={1,2,---,M}:

M
Z Inpg(x) - Pr(m|x, 9(”)) = Z In pg(m, x) - Pr(m!x,H(”))

m=1
M
— Y InPr(m|x,8) - Pr(m|x,6™)

m=1



Auxiliary Function Q(8]0™) (1V)
Proof (continued):
> Since S Pr(m|x,0() =1 and 1(8) = In pg(x), and
pe(m,X) = wy, - fo.. (X) we have
M

Z In Pr(m|x, H(R)) Pr(m|x, H(n))

m=1

1(0) = Q6l6'™) +

M
- S ) P o)

m=1

= Q86"™) + |H(6™|6"™) — H(6]60™)]

\ - 7

~

KL ( Pr(m|x,0()|| Pr(m|x.0)) >0
> Q616"

» Equality holds only when 8|6, properties 1 and 3 are
proved.



Auxiliary Function Q(8]0™) (V)
Proof (continued):

ol@) 0Q(0|6™) oH(6]6™)

00 00 00
OH(6]6™) B 'ﬁéfwww&ewnapawwgaq
00 0—p(n) |~ Pr(m|x, 0) 00 o—a(n)

= 0 Pr(m|x, 0)
- _EE: 00 ]

Property 3 is proved. |



Expectation-Maximization (EM) algorithm

Algorithm 2 EM algorithm

initialize 8, set n = 0

while not converge do
E-step: Q(0]0™)) = Em[ln (W - fgm(x))]X,H(")}
M-step: 0"t = argmaxg Q(06™))
n=n-4+1

end while




Convergence Analysis of EM algorithm

Theorem
Each EM iteration improves [(0): 1(("T1D) > (™).

Proof:
> Property 1 = 1(8")) = Q(9|9(n))‘g:9(n)
> M-step — Q(HIH("))IOZH(TLH) > Q(9|9(n))‘9=9(n>
- Property 3 = 1(07) > Q(816™)],_gors,

1(0) > Q(816™)|)_pinsn) > Q(O10™)] oy = 1(O™)

> Therefore, we have [(8("t1D) > 1(8(™) and
> l(g(n+1)) o l(e(n)) > Q(9|9(n))‘9:9(n+1) - Q(H‘H(n))b:e(n)
H



EM algorithm for GMMs (I)

» If fo_(x) belongs to e-family, Q(-) is concave and M-step can
be solved in closed-form.

» For GMMs, fg (%) is a Gaussian N (X|tm, Xm)

» Denote

wa N (x|, 150

£ (x) = Pr(m|x, 8V) =
M Wl N (x|, )

m

» Given a set of training data {x1,--- ,Xx}, the auxiliary
function: Q(6|0\™) =

M _
Z [ln W In ’?m‘ B (Xz' — IJJm)TEle (Xz' — “m)}ff{'{‘) (Xz)

1=1 m=1



EM algorithm for GMMs (lI)

Forallm=1,2,--- M,

J=0:>ufn+1>zz_zlv (f) .
O D im1 &m’ (Xi)
3@_(-) — ) — Z(n+1) _ Zq{il(xi _ “%Jrl))(xi — N%H))Tf%) (Xz)
O " Z]\il 7(7?)(}(7/)
0 3 Y, 6 (x)
- _ _ _ (n—|—1) =1 SmMm 7
wm[Q() (Zwm 1)]—():> 54 5



ML Estimation of GMMs using EM

» Given a training set D = {x1,x9, -+ , XN}

» Learn a multivariate GMM using D:

M
p(x) = 3" wi - N(x | s Ein)

with 2%21 Wy = 1
> |terative EM training algorithm:
» |nitialize {wﬁg),ﬂg),zgy}, and n =0
> E-step: {win), ui), 0} = {ew)
> M-step: {é_g,,)} . {w$+1),u$+1),2$+1)}
» n =n -+ 1 until converged.



GMM Initialization:
K-Means clustering

®* K-Means Clustering: a.k.a. unsupervised learning
® Unsupervisedly cluster a data set into many homogeneous groups

®* K-Means algorithm:
— step 1: assign all data into one group; calculate centroid.
— step 2: choose a group and split.
— step 3: re-assign all data to groups.
— step 4: calculate centroids for all groups.
— step 5: go back to step 3 until convergence.
— step 6: stop until K classes

® Basics for clustering:
— distance measure
— centroid calculation

— choose a group and split




Bayesian Theory

®* Bayesian methods view model parameters as random variables having
some known prior distribution. (Prior specification)

— Specify prior distribution of model parameters 0 as p(0).

® Training data D allow us to convert the prior distribution into a
posteriori distribution. (Bayesian learning)

p0)-p(D|0)

< p(@)- p(D|6
(D) p0)-p(D|0)

p@| D)=

®* We infer or decide everything solely based on the posteriori
distribution. (Bayesian inference)

— Model estimation: the MAP (maximum a posteriori) estimation
— Pattern Classification: Bayesian classification
— Sequential (on-line, incremental) learning

— Others: prediction, model selection, etc.




Bayesian Learning

Posteriori p(G ‘ D)

Likelihood

P(D|6)

Prior ]?(9)




The MAP estimation of
model parameters

®* Do a point estimate about 0 based on the posteriori distribution

6, = argmax p(6 | D) =argmax p(6)- p(D |6)
7] 0

®* Then Owmar is treated as estimate of model parameters (just like ML
estimate). Sometimes need the EM algorithm to derive it.

®* MAP estimation optimally combine prior knowledge with new
information provided by data.

®* MAP estimation is used in speech recognition to adapt speech
models to a particular speaker to cope with various accents

— From a generic speaker-independent speech model =» prior

— Collect a small set of data from a particular speaker

— The MAP estimate give a speaker-adaptive model which suit
better to this particular speaker.




Bayesian Classification

®* Assume we have N classes, wi (i=1,2,...,N), each class has a
class-conditional pdf p(X|wi,0i) with parameters 0i.

® The prior knowledge about 0i is included in a prior p(0i).

® For each class wi, we have a training data set Di.

Problem: classify an unknown data Y into one of the classes.

®* The Bayesian classification is done as:
o, =argmax p(Y | D,) =argmax | p(Y | ®,.6,)- p(6, | D,) d6,

where

(6, | D) =20 PD.10,.6)

oc p(ez‘)'p(Di | a)i?Gi)

p(D;)




Recursive Bayes Learning
(On-line Bayesian Learning)

* Bayesian theory provides a framework for on-line learning (a.k.a.
incremental learning, adaptive learning).

®* When we observe training data one by one, we can dynamically
adjust the model to learn incrementally from data.

® Assume we observe training data set D={X1,X2,...,Xn} one by one,

p(O)——> pO| X)—=>p(0|X,,X,) ;- p(6| D)
A A A

N

Learping Rule: - posteriori o< prior xlikelihood

Knowledge about Knowledge about Knowledge about Knowledge about
Model at this stage Model at this stage Model at this stage Model at this stage




How to specify priors

®* Noninformative priors

— In case we don’ t have enough prior knowledge, just
use a flat prior at the beginning.

® Conjugate priors: for computation convenience

— For some models, if their probability functions are a
reproducing density, we can choose the prior as a
special form (called conjugate prior), so that after
Bayesian leaning the posterior will have the exact
same function form as the prior except the all
parameters are updated.

— Not every model has conjugate prior.




Conjugate Prior

® For a univariate Gaussian model with only unknown mean:

I (x—u)z]

exp[—
276° 20°

° If we choose the prior as a Gaussian distribution (Gaussian’s

conjugate prior is Gaussian)

p(x|@)=N(x|u,0°)=

1 . 2
)= N o .0 = —expl- e
o, 0

® After observing a new data x1, the posterior will still be Gaussian:

1 . 2
Pt %) = NG| 1, 07) =——— exp[— 1)
2ro; 20,
2 2
where U, = % X, + © u,




The sequential MAP Estimate
of Gaussian

® For univariate Gaussian with unknown mean, the
MAP estimate of its mean after observing xi:

_ Gg o’ Pl x,x,,...,X,)
Hy = Xt > Ho !

| 30




