
Probabilistic Models and
Machine Learning

Prof. Hui Jiang
Department of Computer Science and Engineering

York University

No.7

Generative Models (II):
Parameter Estimation

Statistical Data Modeling
• For any real problem, the true p.d.f.’s are always unknown, neither the

forms of the functions nor the parameters.
• Our approach – statistical data modeling : based on the available

sample data set, choose a proper statistical model to fit into the
available data set.

– Data Modeling stage: once the statistical model is selected, its
function form becomes known except the set of model parameters
associated with the model are unknown to us.

– Learning (training) stage: the unknown parameters can be
estimated by fitting the model into the data set based on certain
estimation criterion.

• the estimated statistical model (assumed model format +
estimated parameters) will give a parametric p.d.f. to
approximate the real but unknown p.d.f. of each class.

– Decision (test) stage: the estimated p.d.f.’s are plugged into the
optimal Bayes decision rule in place of the real p.d.f.’s
è plug-in MAP decision rule
• Not optimal any more but performs reasonably well in practice

Statistical Models: roadmap

Gaussian
(1-d)

Multivariate
Gaussian

GMM CDHMM

Graphical
Models

Multinomial

Markov
Chain

Mixture of
Multinomial

DDHMM

Continuous data
Discrete data

i) Estimation:
ML, Bayesian, DT

ii) Inference

Model Parameter Estimation
• Maximum Likelihood (ML) Estimation:

– Objective function: likelihood function of all observed data
– ML method: most popular model estimation; simplest
– EM (Expected-Maximization) algorithm
– Examples:

• Univariate Gaussian distribution
• Multivariate Gaussian distribution
• Multinomial distribution
• Gaussian Mixture model (GMM)
• Markov chain model
• Hidden Markov Model (HMM)

• Bayesian Model Estimation
– The MAP (maximum a posteriori) estimation (point estimation)
– General Bayesian theory for parameter estimation
– Recursive Bayes Learning (Sequential Bayesian learning)

Maximum Likelihood (ML) Estimation

I Generative models for classification {!1, · · · ,!K}:
I Prior probabilities: Pr(!k) (k = 1, · · · ,K)
I Class-dependent distribution: p(x|!k) (k = 1, · · · ,K)

I Collect training data for each class: Dk ⇠ p(x|!k)

I Density estimation: estimate the probability distribution
from fine samples

I Select probabilistic models: p̂✓k(x) ⇡ p(x|!k)

I Maximum likelihood (ML) Estimation: learn p̂✓k(x) to
maximize the probability of observing the training data Dk

✓⇤k = argmax
✓k

p̂✓k(Dk) (k = 1, · · · ,K)

I ML estimation: fit data best; best interpret the observed data

Maximum Likelihood (ML) Estimation

I Drop index k and p̂(·) ! p(·), ML estimation turns to be:

✓ML = argmax
✓

p✓(D) = argmax
✓

p✓(x1,x2, · · · ,xN)

where D = {x1,x2, · · · ,xN}
I Assume all data are i.i.d. (independent and identically

distributed), i.e., all samples are drawn independently from
the same distribution:

p✓(x1,x2, · · · ,xN) =
NY

i=1

p✓(xi)

I Why called maximum likelihood (not probability)?

I p✓(x): data distribution of various x if ✓ is given (fixed)
I p✓(x): likelihood function of ✓ if x is given (fixed)

Maximum Likelihood (ML) Estimation

I In many cases, it is more convenient to work with the
logarithm of the likelihood rather than the likelihood itself

I Denote the log-likelihood function l(✓) = ln p✓(D), we have

✓ML = argmax
✓

l(✓) = argmax
✓

NX

i=1

ln p✓(xi)

I Optimization methods for ML estimation:
I Di↵erential calculus for simple models, e.g., single

univariate/multivariate Gaussian, ...
I Lagrange optimization for models with constraints, e.g.,

multinomial, markov chain, ...
I Expectation-Maximization (EM) method for mixture models,

e.g., Gaussian mixture models (GMM), hidden Markov models
(HMM), ...

Univariate Gaussian (with known variance)

I The training set: D = {x1, x2, · · · , xN} (a set of scalars)

I A univariate Gaussian (with known variance):

p✓(x) = N (x|µ,�2
0) =

1p
2⇡�2

0

e
� (x�µ)2

2�2
0

I The log-likelihood function:

l(µ) =
NX

i=1

ln p✓(xi) =
NX

i=1

h
� ln(2⇡�2

0)

2
� (xi � µ)2

2�2
0

i

I ML estimate of the unknown Gaussian mean is the sample
mean:

dl(µ)

dµ
= 0 =) µML =

1

N

NX

i=1

xi

Multivariate Gaussian (I)

I The training set: D = {x1,x2, · · · ,xN} (each vector 2 R
d)

I Choose to model D with a multivariate Gaussian distribution:

pµ,⌃(x) =
1

(2⇡)d/2|⌃|1/2
e�

(x�µ)|⌃�1(x�µ)
2

I Assume mean vector µ and covariance matrix ⌃ are unknown

I The log-likelihood function:

l(µ,⌃) =
NX

i=1

ln pµ,⌃(xi)

= C � N

2
ln |⌃|� 1

2

NX

i=1

(xi � µ)|⌃�1(xi � µ)

Multivariate Gaussian (II)

@l(µ,⌃)

@µ
= 0 =)

NX

i=1

⌃�1(xi � µ) = 0 =) µML =
1

N

NX

i=1

xi

@l(µ,⌃)
@⌃ = 0 =)

�N

2
(⌃|)�1 +

1

2
(⌃|)�1

h NX

i=1

(xi � µ)(xi � µ)|
i
(⌃|)�1 = 0

=) ⌃ML =
1

N

NX

i=1

(xi � µML)(xi � µML)
|

Note that

@

@A

⇣
x|A�1y

⌘
= �(A|)�1xy|(A|)�1 (square A)

@

@A

⇣
ln |A|

⌘
= (A�1)| = (A|)�1 (square A)

Gaussian Models for K-class Pattern Classification

I Given K classes {!1, · · · ,!K}, we collect a training set Dk

for each class !k

I If each feature vector is continuous (2 R
d) and follows a

unimodal distribution, we may choose a multivariate Gaussian
for each class, N (x|µ(k),⌃(k)) (k = 1, 2, · · · ,K)

I ML estimation: Dk =) {µ(k)
ML ,⌃

(k)
ML }

I Classify any unknown x using the plug-in MAP decision rule:

g(x) = argmax
k

Pr(!k)p(x|!k) = argmax
k

N (x|µ(k)
ML ,⌃

(k)
ML)

where we may assume all priors Pr(!k) are equiprobable.

Linear and Quadratic
Discriminant Analysis

• Classification: each class is modeled by a multivariate Gaussian
• Linear Discriminant Analysis

– Two Gaussians share the same covariance matrix
– The decision surface is a linear hyperplane

• Quadratic Discriminant Analysis
– Two Gaussians have different covariance matrices
– The decision surface is a quadratic parabola

Examples of ML estimation(4):
multinomial distribution (I)

• A DNA sequence consists of a sequence of 4 different types of
nucleotides (G, A, T, C). For example,

• If assume all nucleotides in a DNA sequence are independent, we can
use multinomial distribution to model a DNA sequence,

• Use p1 to denote probability to observe G in any one location, p2 for
A, p3 for T, p4 for C.

• Obviously, it meets .
• Given a DNA sequence X, the probability to observe X is

X= GAATTCTTCAAAGAGTTCCAGATATCCACAGGCAGATTCTACAAAAGAAGTGTTTCAATACTGCTCTATC
AAAAGATGTATTCCACTCAGTTACTTTCATGCACACATCTCAATGAAGTTCCTGAGAAAGCTTCTGTCTA
GTTTTTATGTGAAAATATTTCCTTTTCCATCATGGGCCTCAAAGCGCTCAAAATGAACCCTTGCAGATAC

TAGAGAAAGACTGTTTCAAAACTGCTCTATCCAAAGAACGGTTCCACTCTGTGAGGTGAATGCACACATC
ACAAAGCAGTTTCTGAGAACGCTTCTGTCTAGTTTGTAGGTGAAGATATTTCCTTTTCCTTCATAGGCCT
CTAATCGCTCCAAATATCCACAAGCAGATTCTTCAAAATGTGTGTTTCAACACTGCTCTATCAAAAGAAA
GGTTCAAGTCTGTGAGTTGAATGCACACATCACAAAGCAGTTTCTGAGAATGCCTCTGTCTAGTTTGTAT
GTGAAGATATTTCTTTTTCCGTCTTATGCCTCAAATCGCTCCAAATATCCACTTGCAGATACTTCAAAA

1
4

1
=∑

=i
ip

Pr(X) = C ⋅ pi
Ni

i=1

4

∏

Examples of ML estimation(4):
multinomial distribution (II)

• Where N1 is frequency of G appearing in X, N2 frequency of A, N3

frequency of T, N3 frequency of C.
• Problem: estimate p1, p2, p3, p4 from a training sequence X based on

the maximum likelihood criterion.
• The log-likelihood function:

• Where N1 is frequency of G in training sequence X, the similar for
N2, N3 and N4.

• Maximization l(.) subject to the constraint
• Use Lagrange optimization:

∑
=

⋅=
4

1
4321 ln),,,(

i
ii pNppppl

1
4

1
=∑

=i
ip

0/0),,,,(

)1(ln),,,,(

4321

4

1

4

1
4321

=−⇒=
∂
∂

−−⋅= ∑∑
==

λλ

λλ

ii
i

i
i

i
ii

pNppppL
p

ppNppppL

Examples of ML estimation(4):
multinomial distribution (III)

• Finally, we get the ML estimation for the multinomial distribution as:

• We only need count the occurrence times (frequency) of each
nucleotides in all training sequences, then the ML estimate can be
easily calculated as above.

• Similar derivation also holds for Markov chain model.
– It has an important application in language modeling, the so-called

n-gram model.

)4,3,2,1(4

1

==
∑
=

i
N

Np

i
i

i
i

Examples of ML estimation(5):
Markov Chain Model (I)

• Markov assumption: a discrete-time Markov chain is a
random sequence x[n] whose n-th conditional probability
function satisfy:

p(x[n] | x[n-1]x[n-2]…x[n-N]) = p(x[n] | x[n-1])

• In other words, probability of observing x[n] only depends
on its previous one x[n-1] (for 1st order Markov chain) or
the most recent history (for higher order Markov chain).

• Parameters in Markov Chain model are a set of
conditional probability functions.

Examples of ML estimation(5):
Markov Chain Model (II)

• Stationary assumption:
p(x[n] | x[n-1]) = p(x[n’] | x[n’-1]) for all n and n’.

• For stationary discrete Markov Chain model:
– Only one set of conditional probability function

• Discrete observation: in practice, the range of values
taken on by each x[n] is finite, which is called state space.
Each distinct one is a Markov state.
– An observation of a discrete Markov chain model

becomes a sequence of Markov states.
– The set of conditional probs à transition matrix

Examples of ML estimation(5):
Markov Chain Model (III)

• Markov Chain Model (stationary & discrete):
– A finite set of Markov states, to say M states.
– A set of state conditional probabilities, i.e., transition matrix

In 1st order Markov chain model, aij = p(j|i) (i,j=1,2,…,M)
• Markov Chain model can be represented by a directed graph.

– Node à Markov state
– Arc à state transition (each arc attached with a transition

probability)
– A Markov chain observation can be viewed as a path traversing a

Markov chain model.
• Probability of observing a Markov chain can be calculated based on

the path and the transition matrix.

Examples of ML estimation(5):
Markov Chain Model (IV)

• First-order Markov Chain Model for DNA sequence

Full Transition matrix (6
by 6)

p(A|G) = 0.16
p(C|G) = 0.34
p(G|G) = 0.38
p(T|G) = 0.12
…
…

One transition
probability is attached
with each arc.

Pr(GAATTC) = p(begin)p(G|begin)p(A|G)p(A|A)p(T|A)p(T|T)p(C|T)p(end|C)

Examples of ML estimation(5):
Markov Chain Model (V)

• Markov Chain Model for language modeling (n-gram)
– Each word is a Markov state, total N words (vocabulary size)
– A set of state (word) conditional probabilities

• Given any a sentence:
S = I would like to fly from New York to Toronto this Friday

• 1st-order Markov chain model: N*N conditional probabilities
Pr(S) = p(I|begin) p(would|I) p(like|would) p(to|like) p(fly|to) …

– This is called bi-gram model
• 2nd-order Markov chain model: N*N*N

Pr(S) = p(I|begin) p(would|I,begin) p(like|would,I) p(to|like,would) p(fly|to,like) …

– This is called tri-gram model
• Multinomial (0th-order Markov chain): N probabilities

Pr(S) = p(I) p(would) p(like) p(to) p(fly) …

– This is called uni-gram model

Examples of ML estimation(5):
Markov Chain Model (VI)

• How to estimate Markov Chain Model from training data
– Similar to ML estimate of multinomial distribution
– Maximization of log-likelihood function with constraints.

• Results:

• Generally, N-gram model: a large number of probabilities to be
estimated.

data gin trainin ofFrequency
data gin trainin ofFrequency

),|(

data gin trainin ofFrequency
data gin trainin ofFrequency

)|(

jk

ijk
kji

j

ij
ji

WW
WWW

WWWp

W
WW

WWp

=

=

Gaussian mixture model (GMM)

To model multi-modal distributions of x 2 R
d, we may consider a

group of Gaussians:

p(x) =
MX

m=1

wm · N (x | µm,⌃m)

I Mixture weights wm satisfy
P

M

m=1wm = 1,

I Mean vector and covariance matrix of m-th Gaussian
component: µm and ⌃m

I If M is large enough, GMMs can approximate any arbitrary
distribution in R

d

Mixture Models

I A mixture of any simpler component distributions:

p(x) =
MX

m=1

wm · f✓m(x)

I Component distribution f✓(x): Gaussians, multinomial,...

I In general, f✓(x) is chosen from the exponential family

(e-family):

f✓(x) = exp
n
A(x̄) + x̄|��K(�)

o

I � = g(✓) is called natural parameters
I x̄ = h(x) is called su�cient statistics
I K(�) is a normalization term:

R
x f✓(x)dx = 1 =) K(�) = ln

h R
x

�
A(h(x))+(h(x))|�

�
dx

i

I Taking logarithm =) ln f✓(x) = A(x̄) + x̄|��K(�)

Exponential Family (e-family)

I Most basic probabilistic models belong to e-family, including
Gaussian, Binomial, Multinomial, Bernoulli, Dirichlet, Beta,
Gamma, Von Mises, Wishart, ...

I Some examples:

f✓(x) � = g(✓) x̄ = h(x) K(�) A(x̄)

Gausssian [µ/�2, 1/�2] [x,�x2/2] 1
2�

2
1/�2 � 1

2 ln(2⇡)
N (x | µ,�2) � 1

2 log(�2)
Gaussian µ ⌃�1

0 x 1
2�

|⌃�1
0 � � d

2 ln(2⇡)
N (x | µ,⌃0)
Gaussian [⌃�1µ,⌃�1] [x,� 1

2xx
|] 1

2�
|
1�

�1
2 �1 � d

2 ln(2⇡)
N (x | µ,⌃) � 1

2 ln |�2|
Multinomial [lnµ1, · · · , x 0 ln(C)
C ·

QD
d=1 µ

xd
d lnµD]

I Products of e-family distributions still belong to e-family

ML Estimation of GMMs

I It is not trivial to estimate GMMs and any mixture models

I Given training data D = {x1,x2, · · · ,xN}
I Log-likelihood function contains log-sum:

l
⇣
{wm,µm,⌃m}

⌘
=

NX

i=1

ln

✓ MX

m=1

wm · N (xi | µm,⌃m)

◆

I Can we switch log-sum into sum-log ?

Expectation-Maximization (EM) algorithm

I Log-likelihood function of mixture models:

l(✓) = ln
MX

m=1

wm · f✓m(x)

I Treat m as a latent variable: an unobserved random variable
in {1, 2, · · · ,M}

I Given any model ✓(n), we may compute a conditional
probability distribution of m based on data x: Pr(m | x,✓(n))

I Define an auxiliary function of ✓ as follows:

Q(✓|✓(n)) = Em

h
ln
�
wm · f✓m(x)

�
| x,✓(n)

i
+ const

=
MX

m=1

ln
⇥
wm · f✓m(x)

⇤
· Pr(m | x,✓(n)) + const

where const = �
P

M

m=1 ln Pr(m | x,✓(n)) Pr(m | x,✓(n))

Auxiliary Function Q(✓|✓(n)) (I)

Theorem

The auxiliary function Q(✓|✓(n)) satisfies the following three
properties:

1. Q(✓|✓(n)) touches l(✓) at ✓(n):

Q(✓|✓(n))
���
✓=✓(n)

= l(✓)
���
✓=✓(n)

2. Q(✓|✓(n)) and l(✓) make a tangent touch at ✓(n):

@Q(✓|✓(n))

@✓

���
✓=✓(n)

=
@l(✓)

@✓

���
✓=✓(n)

3. For all ✓ 6= ✓(n), Q(✓|✓(n)) locates strictly below l(✓):

Q(✓|✓(n)) < l(✓) (8✓ 6= ✓(n))

Auxiliary Function Q(✓|✓(n)) (II)

The auxiliary function Q(✓|✓(n)) is related to l(✓) like this:

Auxiliary Function Q(✓|✓(n)) (III)

Proof:

I Bayes theorem Pr(y|x) = p(x,y)
p(x) =) p(x) = p(x,y)

Pr(y|x)
I Apply to the model p✓(m,x), we have

p✓(x) =
p✓(m,x)

Pr(m|x,✓) =) ln p✓(x) = ln p✓(m,x)�ln Pr(m|x,✓)

I Multiply Pr(m|x,✓(n)) to both sides, and sum over all
m = {1, 2, · · · ,M}:

MX

m=1

ln p✓(x) · Pr(m|x,✓(n)) =
MX

m=1

ln p✓(m,x) · Pr(m|x,✓(n))

�
MX

m=1

ln Pr(m|x,✓) · Pr(m|x,✓(n))

Auxiliary Function Q(✓|✓(n)) (IV)
Proof (continued):

I Since
P

M

m=1 Pr(m|x,✓(n)) = 1 and l(✓) = ln p✓(x), and
p✓(m,x) = wm · f✓m(x) we have

l(✓) = Q(✓|✓(n)) +

"
MX

m=1

ln Pr(m|x,✓(n)) Pr(m|x,✓(n))

�
MX

m=1

ln Pr(m|x,✓) Pr(m|x,✓(n))

#

= Q(✓|✓(n)) +
h
H(✓(n)|✓(n))�H(✓|✓(n))

i

| {z }
KL

�
Pr(m|x,✓(n))||Pr(m|x,✓)

�
�0

� Q(✓|✓(n))

I Equality holds only when ✓|✓(n), properties 1 and 3 are
proved.

Auxiliary Function Q(✓|✓(n)) (V)

Proof (continued):

@l(✓)

@✓
=

@Q(✓|✓(n))

@✓
� @H(✓|✓(n))

@✓

�@H(✓|✓(n))

@✓

����
✓=✓(n)

=

 MX

m=1

Pr(m|x,✓(n))

Pr(m|x,✓)
@ Pr(m|x,✓)

@✓

������
✓=✓(n)

=

 MX

m=1

@ Pr(m|x,✓)
@✓

������
✓=✓(n)

=
@

@✓

h MX

m=1

Pr(m|x,✓)
i����

✓=✓(n)

=
@

@✓

h
1
i���

✓=✓(n)
= 0

Property 3 is proved. ⌅

Expectation-Maximization (EM) algorithm

Algorithm 2 EM algorithm

initialize ✓(0), set n = 0
while not converge do

E-step: Q(✓|✓(n)) = Em

h
ln
�
wm · f✓m(x)

�
|x,✓(n)

i

M-step: ✓(n+1) = argmax✓ Q(✓|✓(n))
n = n+ 1

end while

Convergence Analysis of EM algorithm

Theorem

Each EM iteration improves l(✓): l(✓(n+1)) � l(✓(n)).

Proof:

I Property 1 =) l(✓(n)) = Q(✓|✓(n))
��
✓=✓(n)

I M-step =) Q(✓|✓(n))
��
✓=✓(n+1) � Q(✓|✓(n))

��
✓=✓(n)

I Property 3 =) l(✓(n+1)) > Q(✓|✓(n))
��
✓=✓(n+1)

l(✓(n+1)) > Q(✓|✓(n))
��
✓=✓(n+1) � Q(✓|✓(n))

��
✓=✓(n) = l(✓(n))

I Therefore, we have l(✓(n+1)) � l(✓(n)) and

I l(✓(n+1))� l(✓(n)) > Q(✓|✓(n))
��
✓=✓(n+1) �Q(✓|✓(n))

��
✓=✓(n)

⌅

EM algorithm for GMMs (I)

I If f✓m(x) belongs to e-family, Q(·) is concave and M-step can
be solved in closed-form.

I For GMMs, f✓m(x) is a Gaussian N (x|µm,⌃m)

I Denote

⇠(n)m (x) = Pr(m|x,✓(n)) =
w(n)
m N (x|µ(n)

m ,⌃(n)
m)

P
M

m=1w
(n)
m N (x|µ(n)

m ,⌃(n)
m)

I Given a set of training data {x1, · · · ,xN}, the auxiliary
function: Q(✓|✓(n)) =

NX

i=1

MX

m=1

h
lnwm � ln |⌃m|

2
� (xi � µm)|⌃�1

m (xi � µm)

2

i
⇠(n)m (xi)

EM algorithm for GMMs (II)

For all m = 1, 2, · · ·M ,

@Q(·)
@µm

= 0 =) µ(n+1)
m =

P
N

i=1 xi · ⇠(n)m (xi)
P

N

i=1 ⇠
(n)
m (xi)

@Q(·)
@⌃m

= 0 =) ⌃(n+1)
m =

P
N

i=1(xi � µ(n+1)
m)(xi � µ(n+1)

m)|⇠(n)m (xi)
P

N

i=1 ⇠
(n)
m (xi)

@

wm

h
Q(·)�

� MX

m=1

wm � 1
�i

= 0 =) w(n+1)
m =

P
N

i=1 ⇠
(n)
m (xi)

N

ML Estimation of GMMs using EM

I Given a training set D = {x1,x2, · · · ,xN}
I Learn a multivariate GMM using D:

p(x) =
MX

m=1

wm · N (x | µm,⌃m)

with
P

M

m=1wm = 1
I Iterative EM training algorithm:

I Initialize {w(0)
m ,µ(0)

m ,⌃(0)
m }, and n = 0

I E-step: {w(n)
m ,µ(n)

m ,⌃(n)
m } =) {⇠(n)m }

I M-step: {⇠(n)m } =) {w(n+1)
m ,µ(n+1)

m ,⌃(n+1)
m }

I n = n+ 1 until converged.

GMM Initialization:
K-Means clustering

• K-Means Clustering: a.k.a. unsupervised learning

• Unsupervisedly cluster a data set into many homogeneous groups

• K-Means algorithm:
– step 1: assign all data into one group; calculate centroid.
– step 2: choose a group and split.
– step 3: re-assign all data to groups.
– step 4: calculate centroids for all groups.
– step 5: go back to step 3 until convergence.
– step 6: stop until K classes

• Basics for clustering:
– distance measure
– centroid calculation
– choose a group and split

Bayesian Theory
• Bayesian methods view model parameters as random variables having

some known prior distribution. (Prior specification)
– Specify prior distribution of model parameters θ as p(θ).

• Training data D allow us to convert the prior distribution into a
posteriori distribution. (Bayesian learning)

• We infer or decide everything solely based on the posteriori
distribution. (Bayesian inference)

– Model estimation: the MAP (maximum a posteriori) estimation
– Pattern Classification: Bayesian classification
– Sequential (on-line, incremental) learning
– Others: prediction, model selection, etc.

)|()(
)(

)|()()|(θθθθθ Dpp
Dp
DppDp ⋅∝⋅=

Bayesian Learning

)(θp

θ

Prior

)|(θDP
Likelihood

)|(Dp θPosteriori

MAPθ
MLθ

The MAP estimation of
model parameters

• Do a point estimate about θ based on the posteriori distribution

• Then θMAP is treated as estimate of model parameters (just like ML
estimate). Sometimes need the EM algorithm to derive it.

• MAP estimation optimally combine prior knowledge with new
information provided by data.

• MAP estimation is used in speech recognition to adapt speech
models to a particular speaker to cope with various accents

– From a generic speaker-independent speech model è prior
– Collect a small set of data from a particular speaker
– The MAP estimate give a speaker-adaptive model which suit

better to this particular speaker.

)|()(maxarg)|(maxarg θθθθ
θθ

DppDpMAP ⋅==

Bayesian Classification
• Assume we have N classes, ωi (i=1,2,…,N), each class has a

class-conditional pdf p(X|ωi,θi) with parameters θi.
• The prior knowledge about θi is included in a prior p(θi).
• For each class ωi, we have a training data set Di.
• Problem: classify an unknown data Y into one of the classes.
• The Bayesian classification is done as:

where

∫ ⋅== id)|(),|(maxarg)|(maxarg θθθωω iiii
i

i
i

Y DpYpDYp

),|()(
)(

),|()()|(iiii
i

iiii
ii Dpp

Dp
DppDp θωθθωθθ ⋅∝⋅=

Recursive Bayes Learning
(On-line Bayesian Learning)

• Bayesian theory provides a framework for on-line learning (a.k.a.
incremental learning, adaptive learning).

• When we observe training data one by one, we can dynamically
adjust the model to learn incrementally from data.

• Assume we observe training data set D={X1,X2,…,Xn} one by one,

)|(),|()|()()(
211

21 nXX DpXXpXpp θθθθ ⎯→⎯⎯→⎯

likelihoodpriorposteriori ×∝Learning Rule:

Knowledge about
Model at this stage

Knowledge about
Model at this stage

Knowledge about
Model at this stage

Knowledge about
Model at this stage

How to specify priors
• Noninformative priors

– In case we don’t have enough prior knowledge, just
use a flat prior at the beginning.

• Conjugate priors: for computation convenience
– For some models, if their probability functions are a

reproducing density, we can choose the prior as a
special form (called conjugate prior), so that after
Bayesian leaning the posterior will have the exact
same function form as the prior except the all
parameters are updated.

– Not every model has conjugate prior.

Conjugate Prior
• For a univariate Gaussian model with only unknown mean:

• If we choose the prior as a Gaussian distribution (Gaussian’s
conjugate prior is Gaussian)

• After observing a new data x1, the posterior will still be Gaussian:

]
2

)(
exp[

2

1
),|()|(2

2

2

2

σ
µ

πσ
σµω −−== x

xNxp i

]
2

)(
exp[

2

1
),|()(2

0

2
0

2
0

2
00 σ

µµ
πσ

σµµµ −−== Np

22
0

22
02

1

022
0

2

122
0

2
0

1

2
1

2
1

2
1

2
111

 where

]
2

)(
exp[

2

1
),|()|(

σσ
σσσ

µ
σσ

σ
σσ

σµ

σ
µµ

πσ
σµµµ

+
=

+
+

+
=

−−==

x

Nxp

The sequential MAP Estimate
of Gaussian

• For univariate Gaussian with unknown mean, the
MAP estimate of its mean after observing x1:

• After observing next data x2:

022
0

2

122
0

2
0

1 µ
σσ

σ
σσ

σµ
+

+
+

= x

122
1

2

222
1

2
1

2 µ
σσ

σ
σσ

σµ
+

+
+

= x

