1. The *satisfaction set* Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

- (a) Sat(a) =
- (b) $Sat(f \wedge g) =$
- (c) $Sat(\neg f) =$
- (d) $Sat(\exists \bigcirc f) =$
- (e) $Sat(\forall \bigcirc f)) =$
- 2. Let the set S be finite and the function $G: 2^S \to 2^S$ be monotone, that is, for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \begin{cases} \emptyset & \text{if } n = 0\\ G(G_{n-1}) & \text{otherwise} \end{cases}$$

Prove that for all $n \in \mathbb{N}$, $G_n \subseteq G_{n+1}$.

3. Prove that $G_n = G_{n+1}$ for some $n \in \mathbb{N}$. (Hint: the set S is finite.)

4. We denote the G_n with $G_n = G_{n+1}$ by fix(G). Prove that for all $T \subseteq S$, if G(T) = T then $fix(G) \subseteq T$.

5. The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Prove that F is monotone.