1. The satisfaction set $\operatorname{Sat}(f)$ is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\} .
$$

(a) $\operatorname{Sat}(a)=$
(b) $\operatorname{Sat}(f \wedge g)=$
(c) $\operatorname{Sat}(\neg f)=$
(d) $\operatorname{Sat}(\exists \bigcirc f)=$
(e) $\operatorname{Sat}(\forall \bigcirc f))=$
2. Let the set S be finite and the function $G: 2^{S} \rightarrow 2^{S}$ be monotone, that is, for all $T, U \in 2^{S}$, if $T \subseteq U$ then $G(T) \subseteq G(U)$.

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Prove that for all $n \in \mathbb{N}, G_{n} \subseteq G_{n+1}$.
3. Prove that $G_{n}=G_{n+1}$ for some $n \in \mathbb{N}$. (Hint: the set S is finite.)
4. We denote the G_{n} with $G_{n}=G_{n+1}$ by $f i x(G)$. Prove that for all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.
5. The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Prove that F is monotone.

