
Linear Temporal Logic
EECS 4315

www.eecs.yorku.ca/course/4315/

1/42

www.eecs.yorku.ca/course/4315/

Linear temporal logic

Definition

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the
value of a particular variable being even or a particular method
being invoked).

2/42

Semantics of LTL

Definition

p |= a iff a ∈ `(p[0])

p |= f ∧ g iff p |= f ∧ p |= g

p |= ¬f iff p 6|= f

p |=©f iff p[1..] |= f

p |= f U g iff ∃i ≥ 0 : p[i ..] |= g ∧ ∀0 ≤ j < i : p[j ..] |= f

3/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “initially the light is red and next it
becomes green.”

Answer

red ∧©green

4/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “initially the light is red and next it
becomes green.”

Answer

red ∧©green

4/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “the light becomes eventually
amber.”

Answer

♦amber

5/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “the light becomes eventually
amber.”

Answer

♦amber

5/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “the light is infinitely often red.”

Answer

�♦red

6/42

LTL

LTL is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

· · ·

Question

Which LTL formula expresses “the light is infinitely often red.”

Answer

�♦red

6/42

LTL

Question

What does the formula �(green⇒ ¬© red) express?

Answer

“Once green, the light cannot become red immediately.”

7/42

LTL

Question

What does the formula �(green⇒ ¬© red) express?

Answer

“Once green, the light cannot become red immediately.”

7/42

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted f ≡ g , if for all
transition systems TS ,

TS |= f iff TS |= g .

Exercise

Are the following formulas equivalent? Either provide a proof or a
counter example.

(a) ♦(f ∧ g) ≡ ♦f ∧ ♦g?

(b) ♦© f ≡ ©♦f ?

More practice questions can be found in the textbook.

8/42

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted f ≡ g , if for all
transition systems TS ,

TS |= f iff TS |= g .

Exercise

Are the following formulas equivalent? Either provide a proof or a
counter example.

(a) ♦(f ∧ g) ≡ ♦f ∧ ♦g?

(b) ♦© f ≡ ©♦f ?

More practice questions can be found in the textbook.

8/42

Equivalence

♦(f ∧ g) 6≡ ♦f ∧ ♦g

For the counter example we provide two ingredients:

a transition system, and

LTL formulas for f and g .

Consider the following transition system TS .

Let f = blue and g = red. Then TS |= ♦f ∧ ♦g but
TS 6|= ♦(f ∧ g).

9/42

Equivalence

♦(f ∧ g) 6≡ ♦f ∧ ♦g

For the counter example we provide two ingredients:

a transition system, and

LTL formulas for f and g .

Consider the following transition system TS .

Let f = blue and g = red. Then TS |= ♦f ∧ ♦g but
TS 6|= ♦(f ∧ g).

9/42

Equivalence

♦(f ∧ g) 6≡ ♦f ∧ ♦g

For the counter example we provide two ingredients:

a transition system, and

LTL formulas for f and g .

Consider the following transition system TS .

Let f = blue and g = red. Then TS |= ♦f ∧ ♦g but
TS 6|= ♦(f ∧ g).

9/42

Equivalence

♦© f ≡ ©♦f

Proof: Let TS be a transition system. Let s ∈ I and p ∈ Paths(s).
Then

p |= ♦© f

iff ∃i ≥ 0 : p[i ..] |=©f

iff ∃i ≥ 0 : p[i ..][1..] |= f

iff ∃i ≥ 0 : p[(i + 1)..] |= f

iff ∃i ≥ 0 : p[1..][i ..] |= f

iff p[1..] |= ♦f

iff p |=©♦f

10/42

Equivalence

♦© f ≡ ©♦f

Proof: Let TS be a transition system. Let s ∈ I and p ∈ Paths(s).
Then

p |= ♦© f

iff ∃i ≥ 0 : p[i ..] |=©f

iff ∃i ≥ 0 : p[i ..][1..] |= f

iff ∃i ≥ 0 : p[(i + 1)..] |= f

iff ∃i ≥ 0 : p[1..][i ..] |= f

iff p[1..] |= ♦f

iff p |=©♦f

10/42

Invariants

Definition

The class of LTL formulas that capture invariants is defined by �g
where

g ::= a | g ∧ g | ¬g .

Example

�¬red

11/42

Invariants

Definition

The class of LTL formulas that capture invariants is defined by �g
where

g ::= a | g ∧ g | ¬g .

Example

�¬red

11/42

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

12/42

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

12/42

Safety properties

Safety properties are characterized by “nothing bad ever happens.”
For example, “a red light is immediately preceded by amber” is a
safety property.

Question

How can we express this property in LTL?

Answer

¬red ∧�(©red⇒ amber)

12/42

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

13/42

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

13/42

Liveness properties

Liveness properties are characterized by “something good
eventually happens.” For example, “the light is infinitely often
red” is a liveness property.

Question

How can we express this property in LTL?

Answer

�♦red

13/42

Leslie Lamport

Won the Turing award in
2013.

Won the Dijkstra prize
three times (2000, 2005,
2014).

Elected Fellow of the
ACM in 2014.

Source: Leslie Lamport

14/42

LTL model checking

Problem

Given a transition system TS and an LTL formula f , check
whether TS |= f .

Algorithm

Given a transition system TS and an LTL formula f , the algorithm
returns “yes” if TS |= f and “no” (and a counter example)
otherwise.

15/42

LTL model checking

Problem

Given a transition system TS and an LTL formula f , check
whether TS |= f .

Algorithm

Given a transition system TS and an LTL formula f , the algorithm
returns “yes” if TS |= f and “no” (and a counter example)
otherwise.

15/42

Overview of algorithm

f

TS NBA¬f

TS ⊗ NBA¬f

if there exists an accepting run in TS ⊗ NBA¬f
return ‘‘no’’

else

return ‘‘yes’’

16/42

NBA

Question

What does NBA stand for?

Answer

National Basketball Association.

Answer

Nondeterministic Büchi Automaton.

17/42

NBA

Question

What does NBA stand for?

Answer

National Basketball Association.

Answer

Nondeterministic Büchi Automaton.

17/42

NBA

Question

What does NBA stand for?

Answer

National Basketball Association.

Answer

Nondeterministic Büchi Automaton.

17/42

Julius Richard Büchi (1924–1984)

Julius Richard Büchi was a Swiss
logician and mathematician.

source: wikipedia

18/42

NBA

Definition

A nondeterministic Büchi automaton is a tuple (Q,Σ, δ, I ,F)
consisting of

a finite set Q of states,

a finite set Σ of ”letters,”

a transition function δ : Q × Σ→ 2Q ,

a set I of initial states, and

a set F of final states.

Σ is called an alphabet.

19/42

NBA

q0 q1
g

a

rr g

a

20/42

Run of an NBA

Definition

The infinite sequence of states q0q1q2 . . . is a run for an infinite
sequence of letters a0a1a2 . . . if q0 ∈ I and qi+1 ∈ δ(qi , ai) for all
i ≥ 0.

An infinite sequence of letters is called an (infinite) word.

21/42

Run of an NBA

Definition

The infinite sequence of states q0q1q2 . . . is a run for an infinite
sequence of letters a0a1a2 . . . if q0 ∈ I and qi+1 ∈ δ(qi , ai) for all
i ≥ 0.

An infinite sequence of letters is called an (infinite) word.

21/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q1q0q1q0q1 . . . a run for g a g r g a . . . ?

Answer

Yes.

22/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q1q0q1q0q1 . . . a run for g a g r g a . . . ?

Answer

Yes.

22/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q1q0q1q0q1 . . . a run for g r g r g r . . . ?

Answer

Yes.

23/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q1q0q1q0q1 . . . a run for g r g r g r . . . ?

Answer

Yes.

23/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q0q0q0q0q0 . . . a run for r a r a r a . . . ?

Answer

Yes.

24/42

NBA

q0 q1
g

a

rr g

a

Question

Is q0q0q0q0q0q0 . . . a run for r a r a r a . . . ?

Answer

Yes.

24/42

Accepting run of an NBA

Definition

A run q0q1q2 . . . is accepting if qi ∈ F for infinitely many i ≥ 0.

25/42

NBA

q0 q1
g

a

rr g

a

Question

Is the run q0q1q0q1q0q1 . . . accepting?

Answer

Yes.

26/42

NBA

q0 q1
g

a

rr g

a

Question

Is the run q0q1q0q1q0q1 . . . accepting?

Answer

Yes.

26/42

NBA

q0 q1
g

a

rr g

a

Question

Is the run q0q0q0q0q0q0 . . . accepting?

Answer

No.

27/42

NBA

q0 q1
g

a

rr g

a

Question

Is the run q0q0q0q0q0q0 . . . accepting?

Answer

No.

27/42

Words and LTL formulas

Definition

Let w be a word.

w |= a iff a = w [0]

w |= f ∧ g iff w |= f ∧ w |= g

w |= ¬f iff w 6|= f

w |=©f iff w [1..] |= f

w |= f U g iff ∃i ≥ 0 : w [i ..] |= g ∧ ∀0 ≤ j < i : w [j ..] |= f

28/42

LTL formulas and NBAs

For each LTL formula f , there exists an NBA such that it has an
accepting run for w if and only if w |= f .

The NBA on slide 20 corresponds to the LTL formula �♦g . Note
that its negation is equivalent to ♦�¬g .

29/42

LTL formulas and NBAs

For each LTL formula f , there exists an NBA such that it has an
accepting run for w if and only if w |= f .

The NBA on slide 20 corresponds to the LTL formula �♦g . Note
that its negation is equivalent to ♦�¬g .

29/42

Overview of algorithm

f

TS NBA¬f

TS ⊗ NBA¬f

if there exists an accepting run in TS ⊗ NBA¬f
return ‘‘no’’

else

return ‘‘yes’’

Further details can be found in the textbook.

30/42

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, “Always a state satisfying a can be reached.”

31/42

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, “Always a state satisfying a can be reached.”

31/42

Expressiveness of LTL

Theorem

There does not exists an LTL formula f with TS |= f iff

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a

32/42

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸
♦a

33/42

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a

34/42

How to modify the logic?

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a︸ ︷︷ ︸
�∃♦a

35/42

How to modify the logic?

∀s ∈ I :

∀�∃♦a︷ ︸︸ ︷
∀p ∈ Paths(s) : ∀m ≥ 0 :

∃♦a︷ ︸︸ ︷
∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a︸ ︷︷ ︸

♦a︸ ︷︷ ︸
�∃♦a

36/42

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

37/42

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

37/42

How to modify the logic?

?|=∃♦a︷ ︸︸ ︷
∃p ∈ Paths(s) : ∃n ≥ 0 : p[n] |= a︸ ︷︷ ︸

p|=♦a

Recall that p |= ♦a expresses that path p satisfies formula ♦a.

Question

? |= ∃♦a.

Answer

There exists a path p starting in state s such that p |= ♦a, hence,
s |= ∃♦a.

Consequence

We should distinguish between path formulas and state formulas.

37/42

Computational Tree Logic
EECS 4315

www.eecs.yorku.ca/course/4315/

38/42

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

39/42

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

39/42

Computation tree logic

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In,
Dexter Kozen, editor, Proceedings of Workshop on Logic of
Programs, volume 131 of Lecture Notes in Computer Science,
pages 52–71. Yorktown Heights, NY, USA, May 1981.
Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and
verification of concurrent systems in CESAR. In, Mariangiola
Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the
5th International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337–351. Torino, Italy,
April 1982. Springer-Verlag.

40/42

Syntactic sugar

∃♦f = ∃(true U f)
∀♦f = ∀(true U f)
∃�f = ¬∀(true U ¬f)
∀�f = ¬∃(true U ¬f)

41/42

Semantics of CTL

s |= a iff a ∈ `(s)
s |= f1 ∧ f2 iff s |= f1 ∧ s |= f2

s |= ¬f iff s 6|= f
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and

p |=©f iff p[1] |= f
p |= f1 U f2 iff ∃i ≥ 0 : p[i] |= f2 ∧ ∀0 ≤ j < i : p[j] |= f1

42/42

