Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

LTL is defined by the grammar

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even or a particular method being invoked).

$$p \models a \text{ iff } a \in \ell(p[0])$$

$$p \models f \land g \text{ iff } p \models f \land p \models g$$

$$p \models \neg f \text{ iff } p \not\models f$$

$$p \models \bigcirc f \text{ iff } p[1..] \models f$$

$$p \models f \cup g \text{ iff } \exists i \ge 0 : p[i..] \models g \land \forall 0 \le j < i : p[j..] \models f$$

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Answer

 $\mathsf{red} \land \bigcirc \mathsf{green}$

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light becomes eventually amber."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light becomes eventually amber."

Answer

⊘amber

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light is infinitely often red."

$$f ::= a \mid f \land f \mid \neg f \mid \bigcirc f \mid f \cup f$$

Question

Which LTL formula expresses "the light is infinitely often red."

Answer

 $\Box \Diamond \mathbf{red}$

What does the formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

What does the formula \Box (green $\Rightarrow \neg \bigcirc$ red) express?

Answer

"Once green, the light cannot become red immediately."

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems TS,

$$TS \models f$$
 iff $TS \models g$.

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems TS,

$$TS \models f$$
 iff $TS \models g$.

Exercise

Are the following formulas equivalent? Either provide a proof or a counter example.

(a) $\Diamond (f \land g) \equiv \Diamond f \land \Diamond g$? (b) $\Diamond \bigcirc f \equiv \bigcirc \Diamond f$?

More practice questions can be found in the textbook.

$$\Diamond (f \land g) \not\equiv \Diamond f \land \Diamond g$$

$$\Diamond (f \land g) \not\equiv \Diamond f \land \Diamond g$$

For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

$$\Diamond (f \land g) \not\equiv \Diamond f \land \Diamond g$$

For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

Consider the following transition system TS.

Let f =blue and g =red. Then $TS \models \Diamond f \land \Diamond g$ but $TS \not\models \Diamond (f \land g)$.

 $\Diamond \bigcirc f \equiv \bigcirc \Diamond f$

 $\Diamond \bigcirc f \equiv \bigcirc \Diamond f$

Proof: Let TS be a transition system. Let $s \in I$ and $p \in Paths(s)$. Then

$$p \models \Diamond \bigcirc f$$

iff $\exists i \ge 0 : p[i..] \models \bigcirc f$
iff $\exists i \ge 0 : p[i..][1..] \models f$
iff $\exists i \ge 0 : p[(i+1)..] \models f$
iff $\exists i \ge 0 : p[1..][i..] \models f$
iff $p[1..] \models \Diamond f$
iff $p \models \bigcirc \Diamond f$

The class of LTL formulas that capture $\mathit{invariants}$ is defined by $\Box g$ where

$$g ::= a \mid g \land g \mid \neg g.$$

The class of LTL formulas that capture $\mathit{invariants}$ is defined by $\Box g$ where

$$g ::= a \mid g \land g \mid \neg g.$$

Example

□¬red

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Answer

 $\neg \mathsf{red} \land \Box (\bigcirc \mathsf{red} \Rightarrow \mathsf{amber})$

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Answer

□**⊘**red

- Won the Turing award in 2013.
- Won the Dijkstra prize three times (2000, 2005, 2014).
- Elected Fellow of the ACM in 2014.

Source: Leslie Lamport

Problem

Given a transition system *TS* and an LTL formula *f*, check whether $TS \models f$.

Problem

Given a transition system *TS* and an LTL formula *f*, check whether $TS \models f$.

Algorithm

Given a transition system TS and an LTL formula f, the algorithm returns "yes" if $TS \models f$ and "no" (and a counter example) otherwise.

Overview of algorithm

if there exists an accepting run in $TS \otimes NBA_{\neg f}$ return ''no'' else return ''yes''

What does NBA stand for?

What does NBA stand for?

Answer

National Basketball Association.

What does NBA stand for?

Answer

National Basketball Association.

Answer

Nondeterministic Büchi Automaton.

Julius Richard Büchi was a Swiss logician and mathematician.

source: wikipedia

A nondeterministic Büchi automaton is a tuple $(Q, \Sigma, \delta, I, F)$ consisting of

- a finite set Q of states,
- a finite set Σ of "letters,"
- a transition function $\delta: Q \times \Sigma \rightarrow 2^Q$,
- a set I of initial states, and
- a set F of final states.

 Σ is called an alphabet.

The infinite sequence of states $q_0q_1q_2...$ is a run for an infinite sequence of letters $a_0a_1a_2...$ if $q_0 \in I$ and $q_{i+1} \in \delta(q_i, a_i)$ for all $i \geq 0$.

The infinite sequence of states $q_0q_1q_2...$ is a run for an infinite sequence of letters $a_0a_1a_2...$ if $q_0 \in I$ and $q_{i+1} \in \delta(q_i, a_i)$ for all $i \geq 0$.

An infinite sequence of letters is called an (infinite) word.

Is $q_0q_1q_0q_1q_0q_1\ldots$ a run for g a g r g a ...?

Is $q_0q_1q_0q_1q_0q_1\ldots$ a run for g a g r g a ...?

Is $q_0q_1q_0q_1q_0q_1\ldots$ a run for g r g r g r ...?

Is $q_0q_1q_0q_1q_0q_1\ldots$ a run for g r g r g r ...?

Answer

Yes.

Is $q_0q_0q_0q_0q_0q_0\dots$ a run for r a r a r a ...?

Is $q_0q_0q_0q_0q_0q_0\dots$ a run for r a r a r a ...?

Answer

Yes.

A run $q_0q_1q_2...$ is accepting if $q_i \in F$ for infinitely many $i \ge 0$.

Is the run $q_0q_1q_0q_1q_0q_1...$ accepting?

Is the run $q_0q_1q_0q_1q_0q_1...$ accepting?

Answer

Yes.

Is the run $q_0q_0q_0q_0q_0q_0\dots$ accepting?

Is the run $q_0q_0q_0q_0q_0q_0\dots$ accepting?

Answer

No.

Let w be a word.

$$w \models a \text{ iff } a = w[0]$$

$$w \models f \land g \text{ iff } w \models f \land w \models g$$

$$w \models \neg f \text{ iff } w \not\models f$$

$$w \models \bigcirc f \text{ iff } w[1..] \models f$$

$$w \models f \cup g \text{ iff } \exists i \ge 0 : w[i..] \models g \land \forall 0 \le j < i : w[j..] \models f$$

For each LTL formula f, there exists an NBA such that it has an accepting run for w if and only if $w \models f$.

- For each LTL formula f, there exists an NBA such that it has an accepting run for w if and only if $w \models f$.
- The NBA on slide 20 corresponds to the LTL formula $\Box \Diamond g$. Note that its negation is equivalent to $\Diamond \Box \neg g$.

Overview of algorithm

if there exists an accepting run in $TS \otimes NBA_{\neg f}$ return ''no'' else return ''yes''

Further details can be found in the textbook.

Are there properties we cannot express in LTL?

Are there properties we cannot express in LTL?

Answer

Yes, for example, "Always a state satisfying a can be reached."

Theorem

There does not exists an LTL formula f with $TS \models f$ iff

 $\forall s \in I : \forall p \in Paths(s) : \forall m \ge 0 : \exists q \in Paths(p[m]) : \exists n \ge 0 : q[n] \models a$

$$\forall s \in I : \forall p \in Paths(s) : \forall m \ge 0 : \exists q \in Paths(p[m]) : \underbrace{\exists n \ge 0 : q[n] \models a}_{\Diamond a}$$

How to modify the logic?

$$\overbrace{\exists p \in Paths(s) : \underbrace{\exists n \ge 0 : p[n] \models a}_{p \models \Diamond a}}^{? \models \exists \Diamond a}$$

Recall that $p \models \Diamond a$ expresses that path p satisfies formula $\Diamond a$.

How to modify the logic?

$$\overbrace{\exists p \in Paths(s) : \underbrace{\exists n \ge 0 : p[n] \models a}_{p \models \Diamond a}}^{? \models \exists \Diamond a}$$

Recall that $p \models \Diamond a$ expresses that path p satisfies formula $\Diamond a$.

Question ? $\models \exists \Diamond a.$ Answer

There exists a path *p* starting in state *s* such that $p \models \Diamond a$, hence, $s \models \exists \Diamond a$.

How to modify the logic?

$$\overbrace{\exists p \in Paths(s) : \underbrace{\exists n \ge 0 : p[n] \models a}_{p \models \Diamond a}}^{? \models \exists \Diamond a}$$

Recall that $p \models \Diamond a$ expresses that path p satisfies formula $\Diamond a$.

Question ? $\models \exists \Diamond a.$

Answer

There exists a path *p* starting in state *s* such that $p \models \Diamond a$, hence, $s \models \exists \Diamond a$.

Consequence

We should distinguish between *path formulas* and *state formulas*.

Computational Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

The state formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

 $g ::= \bigcirc f \mid f \cup f$

The state formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

$$g ::= \bigcirc f \mid f \cup f$$

The formulas are defined by

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In, Dexter Kozen, editor, *Proceedings of Workshop on Logic of Programs*, volume 131 of *Lecture Notes in Computer Science*, pages 52–71. Yorktown Heights, NY, USA, May 1981. Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In, Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, *Proceedings of the 5th International Symposium on Programming*, volume 137 of *Lecture Notes in Computer Science*, pages 337–351. Torino, Italy, April 1982. Springer-Verlag.

$$\exists \Diamond f = \exists (\text{true U } f) \forall \Diamond f = \forall (\text{true U } f) \exists \Box f = \neg \forall (\text{true U } \neg f) \forall \Box f = \neg \exists (\text{true U } \neg f)$$

Semantics of CTL

$$s \models a \quad \text{iff} \quad a \in \ell(s)$$

$$s \models f_1 \land f_2 \quad \text{iff} \quad s \models f_1 \land s \models f_2$$

$$s \models \neg f \quad \text{iff} \quad s \not\models f$$

$$s \models \exists g \quad \text{iff} \quad \exists p \in Paths(s) : p \models g$$

$$s \models \forall g \quad \text{iff} \quad \forall p \in Paths(s) : p \models g$$

 and

$$\begin{array}{ll} p \models \bigcirc f & \text{iff} & p[1] \models f \\ p \models f_1 \cup f_2 & \text{iff} & \exists i \ge 0 : p[i] \models f_2 \land \forall 0 \le j < i : p[j] \models f_1 \end{array}$$