Linear Temporal Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Linear temporal logic

Definition

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

where a is an atomic proposition.

An atomic proposition represents a basic property (such as the value of a particular variable being even or a particular method being invoked).

Definition

$$
\begin{aligned}
p & \models a \text { iff } a \in \ell(p[0]) \\
p & =f \wedge g \text { iff } p \models f \wedge p \models g \\
p & \models \neg f \text { iff } p \not \models f \\
p & \models \bigcirc f \text { iff } p[1 . .] \models f \\
p & =f \cup g \text { iff } \exists i \geq 0: p[i . .] \models g \wedge \forall 0 \leq j<i: p[j . .] \models f
\end{aligned}
$$

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "initially the light is red and next it becomes green."

Answer

red \wedge Ogreen

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light becomes eventually amber."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light becomes eventually amber."

Answer

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light is infinitely often red."

LTL

LTL is defined by the grammar

$$
f::=a|f \wedge f| \neg f|\bigcirc f| f \cup f
$$

Question

Which LTL formula expresses "the light is infinitely often red."

Answer

$\square \diamond$ red

Question
What does the formula \square (green $\Rightarrow \neg \bigcirc$ red) express?

Question
What does the formula \square (green $\Rightarrow \neg \bigcirc$ red) express?

Answer
 "Once green, the light cannot become red immediately."

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems $T S$,

$$
T S \models f \text { iff } T S \models g .
$$

Equivalence

Definition

The LTL formulas f and g are equivalent, denoted $f \equiv g$, if for all transition systems $T S$,

$$
T S \models f \text { iff } T S \models g .
$$

Exercise

Are the following formulas equivalent? Either provide a proof or a counter example.
(a) $\diamond(f \wedge g) \equiv \diamond f \wedge \diamond g$?
(b) $\diamond \bigcirc f \equiv \bigcirc \diamond f$?

More practice questions can be found in the textbook.

Equivalence

$\diamond(f \wedge g) \not \equiv \diamond f \wedge \diamond g$

Equivalence

$\diamond(f \wedge g) \not \equiv \diamond f \wedge \diamond g$
For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

Equivalence

$\diamond(f \wedge g) \not \equiv \diamond f \wedge \diamond g$
For the counter example we provide two ingredients:

- a transition system, and
- LTL formulas for f and g.

Consider the following transition system TS

Let $f=$ blue and $g=$ red. Then $T S \vDash \diamond f \wedge \diamond g$ but $T S \not \vDash \diamond(f \wedge g)$.

Equivalence

$\diamond \bigcirc f \equiv \bigcirc \diamond f$

Equivalence

$\diamond \bigcirc f \equiv \bigcirc \diamond f$
Proof: Let $T S$ be a transition system. Let $s \in I$ and $p \in \operatorname{Paths}(s)$. Then

$$
\begin{aligned}
& p \models \diamond \bigcirc f \\
& \text { iff } \exists i \geq 0: p[i . .] \models \bigcirc f \\
& \text { iff } \exists i \geq 0: p[i . .][1 . .] \models f \\
& \text { iff } \exists i \geq 0: p[(i+1) . .] \models f \\
& \text { iff } \exists i \geq 0: p[1 . .][i . .] \models f \\
& \text { iff } p[1 . .] \models \diamond f \\
& \text { iff } p \models \bigcirc \diamond f
\end{aligned}
$$

Invariants

Definition

The class of LTL formulas that capture invariants is defined by $\square g$ where

$$
g::=a|g \wedge g| \neg g .
$$

Invariants

Definition

The class of LTL formulas that capture invariants is defined by $\square g$ where

$$
g::=a|g \wedge g| \neg g .
$$

Example
 $\square \neg$ red

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Safety properties

Safety properties are characterized by "nothing bad ever happens." For example, "a red light is immediately preceded by amber" is a safety property.

Question

How can we express this property in LTL?

Answer
\neg red $\wedge \square$ (○red \Rightarrow amber)

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Liveness properties

Liveness properties are characterized by "something good eventually happens." For example, "the light is infinitely often red" is a liveness property.

Question

How can we express this property in LTL?

Answer

$\square \diamond$ red

Leslie Lamport

- Won the Turing award in 2013.
- Won the Dijkstra prize three times (2000, 2005, 2014).
- Elected Fellow of the ACM in 2014.

Source: Leslie Lamport

LTL model checking

Problem

Given a transition system $T S$ and an LTL formula f, check whether $T S \models f$.

LTL model checking

Problem

Given a transition system $T S$ and an LTL formula f, check whether $T S \models f$.

Algorithm

Given a transition system TS and an LTL formula f, the algorithm returns "yes" if $T S \models f$ and "no" (and a counter example) otherwise.

Overview of algorithm

if there exists an accepting run in $T S \otimes N B A_{\neg f}$ return ' $n o$ ')
else
return ''yes')

Question
What does NBA stand for?

Question

What does NBA stand for?

Answer

National Basketball Association.

Question

What does NBA stand for?

Answer

National Basketball Association.

Answer

Nondeterministic Büchi Automaton.

Julius Richard Büchi (1924-1984)

Julius Richard Büchi was a Swiss logician and mathematician.

source: wikipedia

Definition

A nondeterministic Büchi automaton is a tuple $(Q, \Sigma, \delta, I, F)$ consisting of

- a finite set Q of states,
- a finite set Σ of "letters,"
- a transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$,
- a set $/$ of initial states, and
- a set F of final states.
Σ is called an alphabet.

Run of an NBA

Definition

The infinite sequence of states $q_{0} q_{1} q_{2} \ldots$ is a run for an infinite sequence of letters $a_{0} a_{1} a_{2} \ldots$ if $q_{0} \in I$ and $q_{i+1} \in \delta\left(q_{i}, a_{i}\right)$ for all $i \geq 0$.

Run of an NBA

Definition

The infinite sequence of states $q_{0} q_{1} q_{2} \ldots$ is a run for an infinite sequence of letters $a_{0} a_{1} a_{2} \ldots$ if $q_{0} \in I$ and $q_{i+1} \in \delta\left(q_{i}, a_{i}\right)$ for all $i \geq 0$.

An infinite sequence of letters is called an (infinite) word.

Question

Is $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ a run for g a grg a \ldots ?

Question

Is $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ a run for g a grg a \ldots ?

Answer
Yes.

Question

Is $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ a run for $\operatorname{grgrgr} \ldots$?

Question

Is $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ a run for $\operatorname{grgrgr} \ldots$?

Answer
Yes.

Question

Is $q_{0} q_{0} q_{0} q_{0} q_{0} q_{0} \ldots$ a run for rarara...?

Question

Is $q_{0} q_{0} q_{0} q_{0} q_{0} q_{0} \ldots$ a run for rarara...?

Answer
Yes.

Accepting run of an NBA

Definition

A run $q_{0} q_{1} q_{2} \ldots$ is accepting if $q_{i} \in F$ for infinitely many $i \geq 0$.

Question

Is the run $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ accepting?

Question

Is the run $q_{0} q_{1} q_{0} q_{1} q_{0} q_{1} \ldots$ accepting?

Answer

Yes.

Question

Is the run $q_{0} q_{0} q_{0} q_{0} q_{0} q_{0} \ldots$ accepting?

Question

Is the run $q_{0} q_{0} q_{0} q_{0} q_{0} q_{0} \ldots$ accepting?

Answer
No.

Words and LTL formulas

Definition

Let w be a word.

$$
\begin{aligned}
& w \\
& w \models a \text { iff } a=w[0] \\
& w=f \wedge g \text { iff } w \models f \wedge w \models g \\
& w \models \neg f \text { iff } w \not \models f \\
& w \models \bigcirc f \text { iff } w[1 . .] \models f \\
& w \models f \cup g \text { iff } \exists i \geq 0: w[i . .] \models g \wedge \forall 0 \leq j<i: w[j . .] \models f
\end{aligned}
$$

LTL formulas and NBAs

For each LTL formula f, there exists an NBA such that it has an accepting run for w if and only if $w \models f$.

LTL formulas and NBAs

For each LTL formula f, there exists an NBA such that it has an accepting run for w if and only if $w \models f$.

The NBA on slide 20 corresponds to the LTL formula $\square \diamond g$. Note that its negation is equivalent to $\diamond \square \neg g$.

Overview of algorithm


```
if there exists an accepting run in TS \otimesNBA
    return ''no''
else
    return ''yes''
```

Further details can be found in the textbook.

Expressiveness of LTL

Question
Are there properties we cannot express in LTL?

Expressiveness of LTL

Question

Are there properties we cannot express in LTL?

Answer

Yes, for example, "Always a state satisfying a can be reached."

Expressiveness of LTL

Theorem

There does not exists an LTL formula f with $T S \models f$ iff
$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \exists n \geq 0: q[n]=a$

How to modify the logic?

$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \underbrace{\exists n \geq 0: q[n] \vDash a}_{\diamond a}$

How to modify the logic?

$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \overbrace{\exists q \in \operatorname{Paths}(p[m]): \underbrace{\exists \exists \geq 0: q[n] \models a}_{\diamond a}}^{\exists>a}$

How to modify the logic?

$$
\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \overbrace{\exists q \in \operatorname{Paths}(p[m]): \underbrace{\exists n \geq 0: q[n] \models a}_{\square \exists \diamond a}}^{\exists \overbrace{\bullet a}}
$$

How to modify the logic?

How to modify the logic?

$$
\overbrace{\exists p \in \operatorname{Paths}(s): \underbrace{\exists \models n \geq 0: p[n] \models a}_{p \models \models \Delta}}^{? \models \exists \diamond a}
$$

Recall that $p \models \diamond a$ expresses that path p satisfies formula $\diamond a$.

Question

$? \vDash \exists \diamond$ a.

How to modify the logic?

$$
\overbrace{\exists p \in \operatorname{Paths}(s): \underbrace{\exists n \geq 0: p[n] \models a}_{p \models \vee \diamond a}}^{? \models \exists>a}
$$

Recall that $p \models \diamond$ a expresses that path p satisfies formula $\diamond a$.
Question
$? \vDash \exists \diamond$ a.

Answer
There exists a path p starting in state s such that $p \models \diamond$ a, hence, $s \models \exists \diamond$.

How to modify the logic?

Recall that $p \neq \diamond a$ expresses that path p satisfies formula $\diamond a$.
Question
$? \vDash \exists \diamond$ a.

Answer

There exists a path p starting in state s such that $p \models \diamond a$, hence, $s \models \exists \diamond a$.

Consequence
We should distinguish between path formulas and state formulas.

Computational Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Computation tree logic

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using branching time temporal logic. In, Dexter Kozen, editor, Proceedings of Workshop on Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71. Yorktown Heights, NY, USA, May 1981. Springer-Verlag.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in CESAR. In, Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings of the 5th International Symposium on Programming, volume 137 of Lecture Notes in Computer Science, pages 337-351. Torino, Italy, April 1982. Springer-Verlag.

Syntactic sugar

$$
\begin{aligned}
& \exists \diamond f=\exists(\text { true } U f) \\
& \forall \diamond f=\forall(\text { true } U f) \\
& \exists \square f=\neg(\text { true } U \neg f) \\
& \forall \square f=\neg(\text { true } U \neg f)
\end{aligned}
$$

$$
\begin{array}{rll}
s \models a & \text { iff } & a \in \ell(s) \\
s \models f_{1} \wedge f_{2} & \text { iff } & s \models f_{1} \wedge s \models f_{2} \\
s \models \neg f & \text { iff } & s \not \equiv f \\
s \models \exists g & \text { iff } & \exists p \in \operatorname{Paths}(s): p \models g \\
s \models \forall g & \text { iff } & \forall p \in \operatorname{Paths}(s): p \models g
\end{array}
$$

and

$$
\begin{array}{rll}
p \models \bigcirc f & \text { iff } & p[1] \models f \\
p \models f_{1} \cup f_{2} & \text { iff } & \exists i \geq 0: p[i] \models f_{2} \wedge \forall 0 \leq j<i: p[j] \models f_{1}
\end{array}
$$

