
Quiz 3: grade distribution

40-50 50-60 60-70 70-80 80-90 90-100

1

2

3

4

5

Average: 78%

1/35

Computational Tree Logic
EECS 4315

www.eecs.yorku.ca/course/4315/

2/35

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

3/35

Syntax

The state formulas are defined by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

The path formulas are defined by

g ::=©f | f U f

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

3/35

Semantics of CTL

s |= a iff a ∈ `(s)
s |= f1 ∧ f2 iff s |= f1 ∧ s |= f2

s |= ¬f iff s 6|= f
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and

p |=©f iff p[1] |= f
p |= f1 U f2 iff ∃i ≥ 0 : p[i] |= f2 ∧ ∀0 ≤ j < i : p[j] |= f1

4/35

Semantics of CTL

Question

Recall that
∃♦f = ∃(true U f).

How is
s |= ∃♦f

defined?

Answer

∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

5/35

Semantics of CTL

Question

Recall that
∃♦f = ∃(true U f).

How is
s |= ∃♦f

defined?

Answer

∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

5/35

Semantics of CTL

Question

Recall that
∀♦f = ∀(true U f).

How is
s |= ∀♦f

defined?

Answer

∀p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

6/35

Semantics of CTL

Question

Recall that
∀♦f = ∀(true U f).

How is
s |= ∀♦f

defined?

Answer

∀p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= f

6/35

Semantics of CTL

Question

Recall that
∃�f = ¬∀(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∃p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

7/35

Semantics of CTL

Question

Recall that
∃�f = ¬∀(true U ¬f).

How is
s |= ∃�f

defined?

Answer

∃p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

7/35

Semantics of CTL

Question

Recall that
∀�f = ¬∃(true U ¬f).

How is
s |= ∀�f

defined?

Answer

∀p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

8/35

Semantics of CTL

Question

Recall that
∀�f = ¬∃(true U ¬f).

How is
s |= ∀�f

defined?

Answer

∀p ∈ Paths(s) : ∀i ≥ 0 : p[i] |= f

8/35

Semantics of CTL

TS |= f iff ∀s ∈ I : s |= f .

9/35

Example

Question

How to express “Each red light is preceded by an amber light” in
CTL?

Answer

¬red ∧ ∀�(∃© red⇒ amber)

10/35

Example

Question

How to express “Each red light is preceded by an amber light” in
CTL?

Answer

¬red ∧ ∀�(∃© red⇒ amber)

10/35

Example

Question

How to express “The light is infinitely often green” in CTL?

Answer

∀�∀♦green

11/35

Example

Question

How to express “The light is infinitely often green” in CTL?

Answer

∀�∀♦green

11/35

Expressiveness of LTL and CTL

Theorem

The property

∀s ∈ I : ∀p ∈ Paths(s) : ∀m ≥ 0 : ∃q ∈ Paths(p[m]) : ∃n ≥ 0 : q[n] |= a

cannot be captured by LTL, but is captured by the CTL formula
∀�∃♦a.

12/35

Expressiveness of LTL and CTL

Theorem

The property

∀s ∈ I : ∀p ∈ Paths(s) : ∃i ≥ 0 : ∀j ≥ i : p[j ..] |= a

cannot be captured by CTL, but is captured by the LTL formula
♦�a.

13/35

Model checking CTL

Problem

Given a transition system TS and a CTL formula f , check whether
TS |= f .

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

14/35

Model checking CTL

Problem

Given a transition system TS and a CTL formula f , check whether
TS |= f .

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

14/35

Model checking CTL

Problem

Given a transition system TS and a CTL formula f , check whether
TS |= f .

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

14/35

Model checking CTL

Problem

Given a transition system TS and a CTL formula f , check whether
TS |= f .

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

14/35

Model checking CTL

Problem

Given a transition system TS and a CTL formula f , check whether
TS |= f .

Definition

The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Basic idea

Compute Sat(f) by recursion on the structure of f .

TS |= f iff I ⊆ Sat(f).

Alternative view

Label each state with the subformulas of f that it satisfies.

14/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(a)?

Answer

Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view

Label each state s satisfying a ∈ `(s) with a.

15/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(a)?

Answer

Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view

Label each state s satisfying a ∈ `(s) with a.

15/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(a)?

Answer

Sat(a) = { s ∈ S | a ∈ `(s) }

Alternative view

Label each state s satisfying a ∈ `(s) with a.

15/35

Example

red

1

3 2

1 7→ ∅
2 7→ {red}
3 7→ {red}

16/35

Example

red

1

3 2

1 7→ ∅
2 7→ {red}
3 7→ {red}

16/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(f ∧ g)?

Answer

Sat(f ∧ g) = Sat(f) ∩ Sat(g)

Alternative view

Label states, that are labelled with both f and g , also with f ∧ g .

17/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(f ∧ g)?

Answer

Sat(f ∧ g) = Sat(f) ∩ Sat(g)

Alternative view

Label states, that are labelled with both f and g , also with f ∧ g .

17/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(f ∧ g)?

Answer

Sat(f ∧ g) = Sat(f) ∩ Sat(g)

Alternative view

Label states, that are labelled with both f and g , also with f ∧ g .

17/35

Example

red ∧ blue

1

3 2

1 7→ {blue}
2 7→ {red}
3 7→ {red, blue, red ∧ blue}

18/35

Example

red ∧ blue

1

3 2

1 7→ {blue}
2 7→ {red}
3 7→ {red, blue, red ∧ blue}

18/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(¬f)?

Answer

Sat(¬f) = S \ Sat(f)

Alternative view

Label each state, that is not labelled with f , with ¬f .

19/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(¬f)?

Answer

Sat(¬f) = S \ Sat(f)

Alternative view

Label each state, that is not labelled with f , with ¬f .

19/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(¬f)?

Answer

Sat(¬f) = S \ Sat(f)

Alternative view

Label each state, that is not labelled with f , with ¬f .

19/35

Example

¬(red ∧ blue)

1

3 2

1 7→ {blue,¬(red ∧ blue)}
2 7→ {red,¬(red ∧ blue)}
3 7→ {red, blue, red ∧ blue}

20/35

Example

¬(red ∧ blue)

1

3 2

1 7→ {blue,¬(red ∧ blue)}
2 7→ {red,¬(red ∧ blue)}
3 7→ {red, blue, red ∧ blue}

20/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∃© f)?

Answer

Sat(∃© f) = { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ } where
succ(s) = { t ∈ S | s → t }.

Alternative view

Labels those states, that have a direct successor labelled with f ,
with ∃© f .

21/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∃© f)?

Answer

Sat(∃© f) = { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ } where
succ(s) = { t ∈ S | s → t }.

Alternative view

Labels those states, that have a direct successor labelled with f ,
with ∃© f .

21/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∃© f)?

Answer

Sat(∃© f) = { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ } where
succ(s) = { t ∈ S | s → t }.

Alternative view

Labels those states, that have a direct successor labelled with f ,
with ∃© f .

21/35

Example

∃© red

1

3 2

1 7→ {∃© red}
2 7→ {red, ∃© red}
3 7→ {red}

22/35

Example

∃© red

1

3 2

1 7→ {∃© red}
2 7→ {red, ∃© red}
3 7→ {red}

22/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∀© f)?

Answer

Sat(∀© f) = { s ∈ S | succ(s) ⊆ Sat(f) }.

Alternative view

Labels those states, with all direct successors labelled with f , with
∀© f .

23/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∀© f)?

Answer

Sat(∀© f) = { s ∈ S | succ(s) ⊆ Sat(f) }.

Alternative view

Labels those states, with all direct successors labelled with f , with
∀© f .

23/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∃(f U f) | ∀ © f | ∀(f U f)

Question

What is Sat(∀© f)?

Answer

Sat(∀© f) = { s ∈ S | succ(s) ⊆ Sat(f) }.

Alternative view

Labels those states, with all direct successors labelled with f , with
∀© f .

23/35

Example

∀© red

1

3 2

1 7→ {∀© red}
2 7→ {red, ∀© red}
3 7→ {red}

24/35

Example

∀© red

1

3 2

1 7→ {∀© red}
2 7→ {red, ∀© red}
3 7→ {red}

24/35

Model checking CTL

The formulas are defined by

f ::= a | f ∧ f | ¬f | ∃ © f | ∀ © f | ∃(f U f) | ∀(f U f)

Question

What is Sat(∃(f U g))?

25/35

Model checking CTL

s ∈ Sat(∃(f U g))

iff s |= ∃(f U g)

iff ∃p ∈ Paths(s) : p |= f U g

iff ∃p ∈ Paths(s) : ∃i ≥ 0 : p[i] |= g ∧ ∀0 ≤ j < i : p[j] |= f

iff ∃p ∈ Paths(s) : p[0] |= g ∨ (∃i ≥ 1 : p[i] |= g ∧ ∀0 ≤ j < i : p[j] |= f)

iff ∃p ∈ Paths(s) : p[0] |= g∨
(p[0] |= f ∧ ∃i ≥ 1 : p[i] |= g ∧ ∀1 ≤ j < i : p[j] |= f)

iff s |= g ∨ (s |= f ∧ ∃s → t : t |= ∃(f U g))

iff s ∈ Sat(g) ∨ (s ∈ Sat(f) ∧ ∃t ∈ succ(s) : t ∈ Sat(∃(f U g)))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

26/35

Model checking CTL

As we have seen

s ∈ Sat(∃(f U g))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

Hence, the set Sat(∃(f U g)) is a subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

The set Sat(∃(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Question

Does such a smallest subset exist?

27/35

Model checking CTL

As we have seen

s ∈ Sat(∃(f U g))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

Hence, the set Sat(∃(f U g)) is a subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

The set Sat(∃(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Question

Does such a smallest subset exist?

27/35

Model checking CTL

As we have seen

s ∈ Sat(∃(f U g))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

Hence, the set Sat(∃(f U g)) is a subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

The set Sat(∃(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Question

Does such a smallest subset exist?

27/35

Model checking CTL

As we have seen

s ∈ Sat(∃(f U g))

iff s ∈ Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ Sat(∃(f U g)) 6= ∅ }

Hence, the set Sat(∃(f U g)) is a subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

The set Sat(∃(f U g)) is the smallest subset T of S such that

T = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Question

Does such a smallest subset exist?

27/35

Smallest subset

Definition

A function G : 2S → 2S is monotone if for all T , U ∈ 2S ,

if T ⊆ U then G (T) ⊆ G (U).

Knaster’s fixed point theorem

If the set S is finite and the function G : 2S → 2S is monotone,
then there exists a smallest T ∈ 2S such that G (T) = T .

This smallest T ∈ 2S is known as the least fixed point of G .

28/35

Smallest subset

Definition

A function G : 2S → 2S is monotone if for all T , U ∈ 2S ,

if T ⊆ U then G (T) ⊆ G (U).

Knaster’s fixed point theorem

If the set S is finite and the function G : 2S → 2S is monotone,
then there exists a smallest T ∈ 2S such that G (T) = T .

This smallest T ∈ 2S is known as the least fixed point of G .

28/35

Smallest subset

Definition

A function G : 2S → 2S is monotone if for all T , U ∈ 2S ,

if T ⊆ U then G (T) ⊆ G (U).

Knaster’s fixed point theorem

If the set S is finite and the function G : 2S → 2S is monotone,
then there exists a smallest T ∈ 2S such that G (T) = T .

This smallest T ∈ 2S is known as the least fixed point of G .

28/35

Bronislaw Knaster (1893–1980)

Polish mathematician

Received his Ph.D.
degree from University of
Warsaw

Proved his fixed point
theorem in 1928

Source: Konrad Jacobs

29/35

Knaster’s fixed point theorem

Definition

For each n ∈ N, the set Gn is defined by

Gn =

{
∅ if n = 0
G (Gn−1) otherwise

Proposition

For all n ∈ N, Gn ⊆ Gn+1.

Proof

We prove this by induction on n. In the base case, n = 0, we have
that

G0 = ∅ ⊆ G1.

In the inductive case, we have n ≥ 1. By induction, Gn−1 ⊆ Gn.
Since G is monotone, we have that

Gn = G (Gn−1) ⊆ G (Gn) = Gn+1.

30/35

Knaster’s fixed point theorem

Definition

For each n ∈ N, the set Gn is defined by

Gn =

{
∅ if n = 0
G (Gn−1) otherwise

Proposition

For all n ∈ N, Gn ⊆ Gn+1.

Proof

We prove this by induction on n. In the base case, n = 0, we have
that

G0 = ∅ ⊆ G1.

In the inductive case, we have n ≥ 1. By induction, Gn−1 ⊆ Gn.
Since G is monotone, we have that

Gn = G (Gn−1) ⊆ G (Gn) = Gn+1.

30/35

Knaster’s fixed point theorem

Definition

For each n ∈ N, the set Gn is defined by

Gn =

{
∅ if n = 0
G (Gn−1) otherwise

Proposition

For all n ∈ N, Gn ⊆ Gn+1.

Proof

We prove this by induction on n. In the base case, n = 0, we have
that

G0 = ∅ ⊆ G1.

In the inductive case, we have n ≥ 1. By induction, Gn−1 ⊆ Gn.
Since G is monotone, we have that

Gn = G (Gn−1) ⊆ G (Gn) = Gn+1. 30/35

Knaster’s fixed point theorem

Proposition

Gm = Gm+1 for some m ∈ N.

Proof

Suppose that S contains m elements. Towards a contradiction,
assume that Gn 6= Gn+1 for all n ∈ N. Then Gn ⊂ Gn+1 for all
n ∈ N. Hence, Gn contains at least n elements. Therefore, Gm+1

contains more elements than S . This contradicts that Gm+1 ⊆ S .

We denote the Gm with Gm = Gm+1 by fix(G).

31/35

Knaster’s fixed point theorem

Proposition

Gm = Gm+1 for some m ∈ N.

Proof

Suppose that S contains m elements. Towards a contradiction,
assume that Gn 6= Gn+1 for all n ∈ N. Then Gn ⊂ Gn+1 for all
n ∈ N. Hence, Gn contains at least n elements. Therefore, Gm+1

contains more elements than S . This contradicts that Gm+1 ⊆ S .

We denote the Gm with Gm = Gm+1 by fix(G).

31/35

Knaster’s fixed point theorem

Proposition

Gm = Gm+1 for some m ∈ N.

Proof

Suppose that S contains m elements. Towards a contradiction,
assume that Gn 6= Gn+1 for all n ∈ N. Then Gn ⊂ Gn+1 for all
n ∈ N. Hence, Gn contains at least n elements. Therefore, Gm+1

contains more elements than S . This contradicts that Gm+1 ⊆ S .

We denote the Gm with Gm = Gm+1 by fix(G).

31/35

Knaster’s fixed point theorem

Proposition

For all T ⊆ S , if G (T) = T then fix(G) ⊆ T .

Proof

First, we prove that for all n ∈ N, Gn ⊆ T by induction on n. In
the base case, n = 0, we have that G0 = ∅ ⊆ T . In the inductive
case, we have n ≥ 1. By induction, Gn−1 ⊆ T . Since G is
monotone, Gn = G (Gn−1) ⊆ G (T) = T . Since fix(G) = Gm for
some m ∈ N, we can conclude that fix(G) ⊆ T .

Corollary

fix(G) is the smallest subset T of S such that G (T) = T .

32/35

Knaster’s fixed point theorem

Proposition

For all T ⊆ S , if G (T) = T then fix(G) ⊆ T .

Proof

First, we prove that for all n ∈ N, Gn ⊆ T by induction on n. In
the base case, n = 0, we have that G0 = ∅ ⊆ T . In the inductive
case, we have n ≥ 1. By induction, Gn−1 ⊆ T . Since G is
monotone, Gn = G (Gn−1) ⊆ G (T) = T . Since fix(G) = Gm for
some m ∈ N, we can conclude that fix(G) ⊆ T .

Corollary

fix(G) is the smallest subset T of S such that G (T) = T .

32/35

Knaster’s fixed point theorem

Proposition

For all T ⊆ S , if G (T) = T then fix(G) ⊆ T .

Proof

First, we prove that for all n ∈ N, Gn ⊆ T by induction on n. In
the base case, n = 0, we have that G0 = ∅ ⊆ T . In the inductive
case, we have n ≥ 1. By induction, Gn−1 ⊆ T . Since G is
monotone, Gn = G (Gn−1) ⊆ G (T) = T . Since fix(G) = Gm for
some m ∈ N, we can conclude that fix(G) ⊆ T .

Corollary

fix(G) is the smallest subset T of S such that G (T) = T .

32/35

Smallest subset

Definition

The function F : 2S → 2S is defined by

F (T) = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

F is monotone.

Proof

Let T , U ∈ 2S . Assume that T ⊆ U. Let s ∈ F (T). It remains to
prove that s ∈ F (U). Then s ∈ Sat(g) or s ∈ Sat(f) and
succ(s) ∩ T = ∅. We distinguish two cases. If s ∈ Sat(g) then
s ∈ F (U). If s ∈ Sat(f) and succ(s) ∩ T = ∅ then
succ(s) ∩ U = ∅ since T ⊆ U. Hence, s ∈ F (U).

33/35

Smallest subset

Definition

The function F : 2S → 2S is defined by

F (T) = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

F is monotone.

Proof

Let T , U ∈ 2S . Assume that T ⊆ U. Let s ∈ F (T). It remains to
prove that s ∈ F (U). Then s ∈ Sat(g) or s ∈ Sat(f) and
succ(s) ∩ T = ∅. We distinguish two cases. If s ∈ Sat(g) then
s ∈ F (U). If s ∈ Sat(f) and succ(s) ∩ T = ∅ then
succ(s) ∩ U = ∅ since T ⊆ U. Hence, s ∈ F (U).

33/35

Smallest subset

Definition

The function F : 2S → 2S is defined by

F (T) = Sat(g) ∪ { s ∈ Sat(f) | succ(s) ∩ T 6= ∅ }

Proposition

F is monotone.

Proof

Let T , U ∈ 2S . Assume that T ⊆ U. Let s ∈ F (T). It remains to
prove that s ∈ F (U). Then s ∈ Sat(g) or s ∈ Sat(f) and
succ(s) ∩ T = ∅. We distinguish two cases. If s ∈ Sat(g) then
s ∈ F (U). If s ∈ Sat(f) and succ(s) ∩ T = ∅ then
succ(s) ∩ U = ∅ since T ⊆ U. Hence, s ∈ F (U).

33/35

Model checking CTL

Sat(f):
switch (f) {

case a : return { s ∈ S | a ∈ `(s) }
case f ∧ g : return Sat(f) ∩ Sat(g)
case ¬f : return S \ Sat(f)
case ∃© f : return { s ∈ S | succ(s) ∩ Sat(f) 6= ∅ }
case ∀© f : return { s ∈ S | succ(s) ⊆ Sat(f) }
case ∃(f U g) : T = ∅

while T 6= F (T)
T = F (T)

return T
case ∀(f U g) : T = ∅

while T 6= G (T)
T = G (T)

return T
}

34/35

Project

Submit the final version of your project proposal before Tuesday
February 25.

35/35

