Quiz 3: grade distribution

Average: 78\%

Computational Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

Syntax

The state formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists g| \forall g
$$

The path formulas are defined by

$$
g::=\bigcirc f \mid f \cup f
$$

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

$$
\begin{array}{rll}
s \models a & \text { iff } & a \in \ell(s) \\
s \models f_{1} \wedge f_{2} & \text { iff } & s \models f_{1} \wedge s \models f_{2} \\
s \models \neg f & \text { iff } & s \not \equiv f \\
s \models \exists g & \text { iff } & \exists p \in \operatorname{Paths}(s): p \models g \\
s \models \forall g & \text { iff } & \forall p \in \operatorname{Paths}(s): p \models g
\end{array}
$$

and

$$
\begin{array}{rll}
p \models \bigcirc f & \text { iff } & p[1] \models f \\
p \models f_{1} \cup f_{2} & \text { iff } & \exists i \geq 0: p[i] \models f_{2} \wedge \forall 0 \leq j<i: p[j] \models f_{1}
\end{array}
$$

Semantics of CTL

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } U f)
$$

How is

$$
s \models \exists \diamond f
$$

defined?

Question
Recall that

$$
\exists \diamond f=\exists(\text { true } U f)
$$

How is

$$
s \vDash \exists \diamond f
$$

defined?

> Answer
> $\exists p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f$

Semantics of CTL

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } U f)
$$

How is

$$
s \models \forall \diamond f
$$

defined?

Question
Recall that

$$
\forall \diamond f=\forall(\text { true } U f)
$$

How is

$$
s \vDash \forall \diamond f
$$

defined?

Answer
$\forall p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models f$

Semantics of CTL

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f) .
$$

How is

$$
s \vDash \exists \square f
$$

defined?

Question
Recall that

$$
\exists \square f=\neg \forall(\text { true } U \neg f) .
$$

How is

$$
s \vDash \exists \square f
$$

defined?

Answer
$\exists p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f$

Semantics of CTL

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } U \neg f) .
$$

How is

$$
s \models \forall \square f
$$

defined?

Question
Recall that

$$
\forall \square f=\neg \exists(\text { true } U \neg f) .
$$

How is

$$
s \models \forall \square f
$$

defined?

Answer
$\forall p \in \operatorname{Paths}(s): \forall i \geq 0: p[i] \models f$

Semantics of CTL

$T S \models f$ iff $\forall s \in I: s \models f$.

Example

Question

How to express "Each red light is preceded by an amber light" in CTL?

Example

Question

How to express "Each red light is preceded by an amber light" in CTL?

Answer

$$
\neg \text { red } \wedge \forall \square(\exists \bigcirc \text { red } \Rightarrow \text { amber })
$$

Example

Question

How to express "The light is infinitely often green" in CTL?

Example

Question

How to express "The light is infinitely often green" in CTL?

Answer $\forall \square \forall \diamond$ green

Expressiveness of LTL and CTL

Theorem

The property
$\forall s \in I: \forall p \in \operatorname{Paths}(s): \forall m \geq 0: \exists q \in \operatorname{Paths}(p[m]): \exists n \geq 0: q[n]=a$
cannot be captured by LTL, but is captured by the CTL formula $\forall \square \exists \diamond a$.

Expressiveness of LTL and CTL

Theorem

The property

$$
\forall s \in I: \forall p \in \operatorname{Paths}(s): \exists i \geq 0: \forall j \geq i: p[j . .] \models a
$$

cannot be captured by CTL, but is captured by the LTL formula $\diamond \square a$.

Model checking CTL

Problem
Given a transition system TS and a CTL formula f, check whether $T S \models f$.

Model checking CTL

Problem
Given a transition system TS and a CTL formula f, check whether $T S \models f$.

Definition

The satisfaction set $\operatorname{Sat}(f)$ is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\}
$$

Model checking CTL

Problem

Given a transition system TS and a CTL formula f, check whether $T S \models f$.

Definition

The satisfaction set Sat (f) is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\}
$$

Basic idea

Compute $\operatorname{Sat}(f)$ by recursion on the structure of f.

Model checking CTL

Problem

Given a transition system TS and a CTL formula f, check whether $T S \models f$.

Definition

The satisfaction set Sat (f) is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\}
$$

Basic idea

Compute $\operatorname{Sat}(f)$ by recursion on the structure of f.
$T S \models f$ iff $I \subseteq \operatorname{Sat}(f)$.

Model checking CTL

Problem

Given a transition system TS and a CTL formula f, check whether $T S \models f$.

Definition

The satisfaction set Sat (f) is defined by

$$
\operatorname{Sat}(f)=\{s \in S \mid s \models f\}
$$

Basic idea

Compute $\operatorname{Sat}(f)$ by recursion on the structure of f.
$T S \models f$ iff $I \subseteq \operatorname{Sat}(f)$.
Alternative view
Label each state with the subformulas of f that it satisfies.

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is Sat(a)?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(a)$?

Answer

$\operatorname{Sat}(a)=\{s \in S \mid a \in \ell(s)\}$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(a)$?

Answer
$\operatorname{Sat}(a)=\{s \in S \mid a \in \ell(s)\}$

Alternative view
Label each state s satisfying $a \in \ell(s)$ with a.

Example

Example

$$
\begin{aligned}
1 & \mapsto \emptyset \\
2 & \mapsto\{\text { red }\} \\
3 & \mapsto\{\text { red }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(f \wedge g)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(f \wedge g)$?

Answer

$$
\operatorname{Sat}(f \wedge g)=\operatorname{Sat}(f) \cap \operatorname{Sat}(g)
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(f \wedge g)$?

Answer

$$
\operatorname{Sat}(f \wedge g)=\operatorname{Sat}(f) \cap \operatorname{Sat}(g)
$$

Alternative view

Label states, that are labelled with both f and g, also with $f \wedge g$.

Example

red \wedge blue

Example

red \wedge blue

$$
\begin{aligned}
1 & \mapsto\{\text { blue }\} \\
2 & \mapsto\{\text { red }\} \\
3 & \mapsto\{\text { red, blue, red } \wedge \text { blue }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\neg f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\neg f)$?

Answer

$\operatorname{Sat}(\neg f)=S \backslash \operatorname{Sat}(f)$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\neg f)$?

Answer

$\operatorname{Sat}(\neg f)=S \backslash \operatorname{Sat}(f)$

Alternative view

Label each state, that is not labelled with f, with $\neg f$.

Example

$\neg($ red \wedge blue $)$

Example

$\neg($ red \wedge blue $)$

$$
\begin{aligned}
1 & \mapsto\{\text { blue }, \neg(\text { red } \wedge \text { blue })\} \\
2 & \mapsto\{\text { red, } \neg(\text { red } \wedge \text { blue })\} \\
3 & \mapsto\{\text { red, blue }, \text { red } \wedge \text { blue }\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question
What is $\operatorname{Sat}(\exists \bigcirc f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc f)$?

Answer

$\operatorname{Sat}(\exists \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$ where $\operatorname{succ}(s)=\{t \in S \mid s \rightarrow t\}$.

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists \bigcirc f)$?

Answer

$\operatorname{Sat}(\exists \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$ where $\operatorname{succ}(s)=\{t \in S \mid s \rightarrow t\}$.

Alternative view

Labels those states, that have a direct successor labelled with f, with $\exists \bigcirc f$.

Example

Example

$$
\begin{aligned}
1 & \mapsto\{\exists \bigcirc \mathrm{red}\} \\
2 & \mapsto\{\mathrm{red}, \exists \bigcirc \mathrm{red}\} \\
3 & \mapsto\{\mathrm{red}\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall \bigcirc f)$?

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall \bigcirc f)$?

Answer

$$
\operatorname{Sat}(\forall \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \subseteq \operatorname{Sat}(f)\}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \exists(f \cup f)|\forall \bigcirc f| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\forall \bigcirc f)$?

Answer

$$
\operatorname{Sat}(\forall \bigcirc f)=\{s \in S \mid \operatorname{succ}(s) \subseteq \operatorname{Sat}(f)\}
$$

Alternative view

Labels those states, with all direct successors labelled with f, with $\forall \bigcirc f$.

Example

Example

$$
\begin{aligned}
1 & \mapsto\{\forall \bigcirc \mathrm{red}\} \\
2 & \mapsto\{\mathrm{red}, \forall \bigcirc \mathrm{red}\} \\
3 & \mapsto\{\mathrm{red}\}
\end{aligned}
$$

Model checking CTL

The formulas are defined by

$$
f::=a|f \wedge f| \neg f|\exists \bigcirc f| \forall \bigcirc f|\exists(f \cup f)| \forall(f \cup f)
$$

Question

What is $\operatorname{Sat}(\exists(f \cup g))$?

Model checking CTL

$s \in \operatorname{Sat}(\exists(f \cup g))$
iff $s \models \exists(f \cup g)$
iff $\exists p \in \operatorname{Paths}(s): p \models f \cup g$
iff $\exists p \in \operatorname{Paths}(s): \exists i \geq 0: p[i] \models g \wedge \forall 0 \leq j<i: p[j] \models f$
iff $\exists p \in \operatorname{Paths}(s): p[0] \models g \vee(\exists i \geq 1: p[i] \models g \wedge \forall 0 \leq j<i: p[j] \models f)$
iff $\exists p \in \operatorname{Paths}(s): p[0] \models g \vee$

$$
(p[0] \models f \wedge \exists i \geq 1: p[i] \models g \wedge \forall 1 \leq j<i: p[j] \models f)
$$

iff $s \models g \vee(s \models f \wedge \exists s \rightarrow t: t \vDash \exists(f \cup g))$
iff $s \in \operatorname{Sat}(g) \vee(s \in \operatorname{Sat}(f) \wedge \exists t \in \operatorname{succ}(s): t \in \operatorname{Sat}(\exists(f \cup g)))$
iff $s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}$

Model checking CTL

As we have seen
$s \in \operatorname{Sat}(\exists(f \cup g))$
iff $s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

The set $\operatorname{Sat}(\exists(f \cup g))$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Model checking CTL

As we have seen

$$
\begin{aligned}
& s \in \operatorname{Sat}(\exists(f \cup g)) \\
& \text { iff } s \in \operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap \operatorname{Sat}(\exists(f \cup g)) \neq \emptyset\}
\end{aligned}
$$

Hence, the set $\operatorname{Sat}(\exists(f \cup g))$ is a subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

The set $\operatorname{Sat}(\exists(f U g))$ is the smallest subset T of S such that

$$
T=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Question

Does such a smallest subset exist?

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^{S} \rightarrow 2^{S}$ is monotone, then there exists a smallest $T \in 2^{S}$ such that $G(T)=T$.

Smallest subset

Definition

A function $G: 2^{S} \rightarrow 2^{S}$ is monotone if for all $T, U \in 2^{S}$,

$$
\text { if } T \subseteq U \text { then } G(T) \subseteq G(U)
$$

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^{S} \rightarrow 2^{S}$ is monotone, then there exists a smallest $T \in 2^{S}$ such that $G(T)=T$.

This smallest $T \in 2^{S}$ is known as the least fixed point of G.

Bronislaw Knaster (1893-1980)

- Polish mathematician
- Received his Ph.D. degree from University of Warsaw
- Proved his fixed point theorem in 1928

Source: Konrad Jacobs

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Proposition

For all $n \in \mathbb{N}, G_{n} \subseteq G_{n+1}$.

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_{n} is defined by

$$
G_{n}= \begin{cases}\emptyset & \text { if } n=0 \\ G\left(G_{n-1}\right) & \text { otherwise }\end{cases}
$$

Proposition

For all $n \in \mathbb{N}, G_{n} \subseteq G_{n+1}$.

Proof

We prove this by induction on n. In the base case, $n=0$, we have that

$$
G_{0}=\emptyset \subseteq G_{1} .
$$

In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq G_{n}$. Since G is monotone, we have that

$$
G_{n}=G\left(G_{n-1}\right) \subseteq G\left(G_{n}\right)=G_{n+1}
$$

Knaster's fixed point theorem

Proposition

$$
G_{m}=G_{m+1} \text { for some } m \in \mathbb{N} .
$$

Knaster's fixed point theorem

Proposition

$G_{m}=G_{m+1}$ for some $m \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $G_{n} \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_{n} \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_{n} contains at least n elements. Therefore, G_{m+1} contains more elements than S. This contradicts that $G_{m+1} \subseteq S$.

Knaster's fixed point theorem

Proposition

$G_{m}=G_{m+1}$ for some $m \in \mathbb{N}$.

Proof

Suppose that S contains m elements. Towards a contradiction, assume that $G_{n} \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_{n} \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_{n} contains at least n elements. Therefore, G_{m+1} contains more elements than S. This contradicts that $G_{m+1} \subseteq S$.

We denote the G_{m} with $G_{m}=G_{m+1}$ by $\operatorname{fix}(G)$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}, G_{n} \subseteq T$ by induction on n. In the base case, $n=0$, we have that $G_{0}=\emptyset \subseteq T$. In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_{n}=G\left(G_{n-1}\right) \subseteq G(T)=T$. Since $\operatorname{fix}(G)=G_{m}$ for some $m \in \mathbb{N}$, we can conclude that $\operatorname{fix}(G) \subseteq T$.

Knaster's fixed point theorem

Proposition

For all $T \subseteq S$, if $G(T)=T$ then $f i x(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}, G_{n} \subseteq T$ by induction on n. In the base case, $n=0$, we have that $G_{0}=\emptyset \subseteq T$. In the inductive case, we have $n \geq 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_{n}=G\left(G_{n-1}\right) \subseteq G(T)=T$. Since $\operatorname{fix}(G)=G_{m}$ for some $m \in \mathbb{N}$, we can conclude that $\operatorname{fix}(G) \subseteq T$.

Corollary
fix (G) is the smallest subset T of S such that $G(T)=T$.

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

F is monotone.

Smallest subset

Definition

The function $F: 2^{S} \rightarrow 2^{S}$ is defined by

$$
F(T)=\operatorname{Sat}(g) \cup\{s \in \operatorname{Sat}(f) \mid \operatorname{succ}(s) \cap T \neq \emptyset\}
$$

Proposition

F is monotone.

Proof

Let $T, U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in \operatorname{Sat}(g)$ or $s \in \operatorname{Sat}(f)$ and $\operatorname{succ}(s) \cap T=\emptyset$. We distinguish two cases. If $s \in \operatorname{Sat}(g)$ then $s \in F(U)$. If $s \in \operatorname{Sat}(f)$ and $\operatorname{succ}(s) \cap T=\emptyset$ then $\operatorname{succ}(s) \cap U=\emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

Model checking CTL

```
Sat(f):
switch (f) {
case a : return {s\inS|a\in\ell(s)}
case f}\wedgeg: return Sat (f)\cap\operatorname{Sat}(g
case \negf: return }S\backslash\operatorname{Sat}(f
case }\exists\bigcircf:\quadreturn {s\inS|\operatorname{succ}(s)\cap\operatorname{Sat}(f)\not=\emptyset
case }\forall\bigcircf:\quadreturn {s\inS|\operatorname{succ}(s)\subseteq\operatorname{Sat}(f)
case }\exists(f\cupg) : T=
    while T 
    T=F(T)
    return T
case }\forall(f\cupg):T=
    while T\not=G(T)
        T=G(T)
    return T
}
```


Project

Submit the final version of your project proposal before Tuesday February 25.

