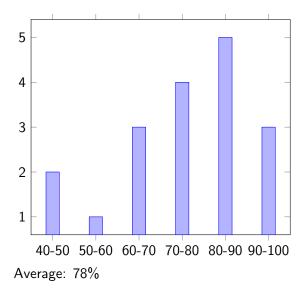
Quiz 3: grade distribution



Computational Tree Logic EECS 4315

www.eecs.yorku.ca/course/4315/

The state formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

$$g ::= \bigcirc f \mid f \cup f$$

The state formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists g \mid \forall g$$

The path formulas are defined by

$$g ::= \bigcirc f \mid f \cup f$$

The formulas are defined by

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Semantics of CTL

$$s \models a \quad \text{iff} \quad a \in \ell(s)$$

$$s \models f_1 \land f_2 \quad \text{iff} \quad s \models f_1 \land s \models f_2$$

$$s \models \neg f \quad \text{iff} \quad s \not\models f$$

$$s \models \exists g \quad \text{iff} \quad \exists p \in Paths(s) : p \models g$$

$$s \models \forall g \quad \text{iff} \quad \forall p \in Paths(s) : p \models g$$

 and

$$\begin{array}{ll} p \models \bigcirc f & \text{iff} & p[1] \models f \\ p \models f_1 \cup f_2 & \text{iff} & \exists i \ge 0 : p[i] \models f_2 \land \forall 0 \le j < i : p[j] \models f_1 \end{array}$$

Question		
Recall that		
	$\exists \Diamond f = \exists (true U f).$	
How is		
	$s\models\exists\Diamond f$	
defined?		

Question		
Recall that		
	$\exists \Diamond f = \exists (true U f).$	
How is		
	$s\models\exists\Diamond f$	
defined?		

Answer

 $\exists p \in Paths(s) : \exists i \ge 0 : p[i] \models f$

Recall that

 $\forall \Diamond f = \forall (\mathsf{true} \, \mathsf{U} \, f).$

How is

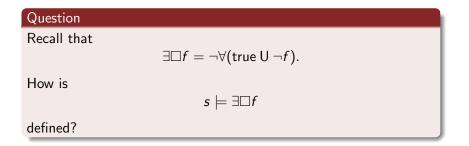
 $s \models \forall \Diamond f$

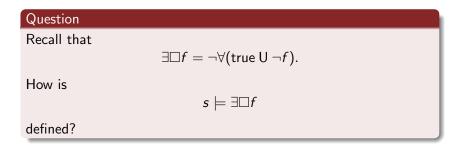
defined?

Question		
Recall that		
	$\forall \Diamond f = \forall (true \ U \ f).$	
How is		
	$s\models \forall \Diamond f$	
defined?		

Answer

 $\forall p \in Paths(s) : \exists i \ge 0 : p[i] \models f$





Answer

 $\exists p \in Paths(s) : \forall i \geq 0 : p[i] \models f$

Recall that

$$\forall \Box f = \neg \exists (\mathsf{true} \, \mathsf{U} \, \neg f).$$

How is

$$s \models \forall \Box f$$

defined?

Question		
Recall that		
	$\forall \Box f = \neg \exists (true U \neg f).$	
How is		
	$s\models \forall \Box f$	
defined?		

Answer

 $\forall p \in Paths(s) : \forall i \ge 0 : p[i] \models f$

$TS \models f$ iff $\forall s \in I : s \models f$.

How to express "Each red light is preceded by an amber light" in CTL?

How to express "Each red light is preceded by an amber light" in CTL?

Answer

```
\neg \mathsf{red} \land \forall \Box (\exists \bigcirc \mathsf{red} \Rightarrow \mathsf{amber})
```

How to express "The light is infinitely often green" in CTL?

How to express "The light is infinitely often green" in CTL?

Answer

 $\forall \Box \forall \Diamond green$

Theorem

The property

 $\forall s \in I : \forall p \in Paths(s) : \forall m \ge 0 : \exists q \in Paths(p[m]) : \exists n \ge 0 : q[n] \models a$

cannot be captured by LTL, but is captured by the CTL formula $\forall \Box \exists \Diamond a$.

Theorem

The property

$$\forall s \in I : \forall p \in Paths(s) : \exists i \ge 0 : \forall j \ge i : p[j..] \models a$$

cannot be captured by CTL, but is captured by the LTL formula $\Diamond \Box a$.

Problem

Given a transition system TS and a CTL formula f, check whether $TS \models f$.

Problem

Given a transition system TS and a CTL formula f, check whether $TS \models f$.

Definition

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Problem

Given a transition system TS and a CTL formula f, check whether $TS \models f$.

Definition

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Basic idea

Compute Sat(f) by recursion on the structure of f.

Problem

Given a transition system TS and a CTL formula f, check whether $TS \models f$.

Definition

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Basic idea

Compute Sat(f) by recursion on the structure of f.

 $TS \models f$ iff $I \subseteq Sat(f)$.

Problem

Given a transition system TS and a CTL formula f, check whether $TS \models f$.

Definition

The satisfaction set Sat(f) is defined by

$$Sat(f) = \{ s \in S \mid s \models f \}.$$

Basic idea

Compute Sat(f) by recursion on the structure of f.

 $TS \models f \text{ iff } I \subseteq Sat(f).$

Alternative view

Label each state with the subformulas of f that it satisfies.

$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is Sat(a)?

$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is Sat(a)?

Answer

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

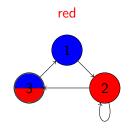
What is *Sat*(*a*)?

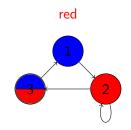
Answer

$$Sat(a) = \{ s \in S \mid a \in \ell(s) \}$$

Alternative view

Label each state s satisfying $a \in \ell(s)$ with a.





$$1 \mapsto \emptyset$$
$$2 \mapsto \{\mathsf{red}\}$$
$$3 \mapsto \{\mathsf{red}\}$$

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(f \wedge g)$?

The formulas are defined by

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(f \wedge g)$?

Answer

 $Sat(f \wedge g) = Sat(f) \cap Sat(g)$

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(f \wedge g)$?

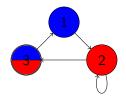
Answer

$$Sat(f \land g) = Sat(f) \cap Sat(g)$$

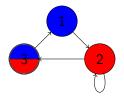
Alternative view

Label states, that are labelled with both f and g, also with $f \wedge g$.

 $\mathsf{red} \land \mathsf{blue}$



 $\mathsf{red} \wedge \mathsf{blue}$



$$\begin{split} &1\mapsto \{\mathsf{blue}\}\\ &2\mapsto \{\mathsf{red}\}\\ &3\mapsto \{\mathsf{red},\mathsf{blue},\mathsf{red}\wedge\mathsf{blue}\} \end{split}$$

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(\neg f)$?

The formulas are defined by

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(\neg f)$?

Answer

 $Sat(\neg f) = S \setminus Sat(f)$

The formulas are defined by

 $f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$

Question

What is $Sat(\neg f)$?

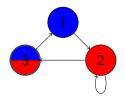
Answer

$$Sat(\neg f) = S \setminus Sat(f)$$

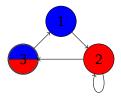
Alternative view

Label each state, that is not labelled with f, with $\neg f$.

\neg (red \land blue)



$\neg (\text{red} \land \text{blue})$



 $1 \mapsto \{ \mathsf{blue}, \neg(\mathsf{red} \land \mathsf{blue}) \}$ $2 \mapsto \{ \mathsf{red}, \neg(\mathsf{red} \land \mathsf{blue}) \}$ $3 \mapsto \{ \mathsf{red}, \mathsf{blue}, \mathsf{red} \land \mathsf{blue} \}$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

Answer

$$Sat(\exists \bigcirc f) = \{ s \in S \mid succ(s) \cap Sat(f) \neq \emptyset \} \text{ where } succ(s) = \{ t \in S \mid s \to t \}.$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\exists \bigcirc f)$?

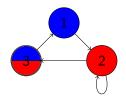
Answer

$$Sat(\exists \bigcirc f) = \{ s \in S \mid succ(s) \cap Sat(f) \neq \emptyset \} \text{ where } succ(s) = \{ t \in S \mid s \to t \}.$$

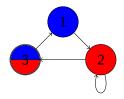
Alternative view

Labels those states, that have a direct successor labelled with f , with $\exists \bigcirc f.$

$\exists \bigcirc \mathsf{red}$



$\exists \bigcirc \mathsf{red}$



$$1 \mapsto \{ \exists \bigcirc \mathsf{red} \}$$
$$2 \mapsto \{\mathsf{red}, \exists \bigcirc \mathsf{red} \}$$
$$3 \mapsto \{\mathsf{red}\}$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\forall \bigcirc f)$?

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\forall \bigcirc f)$?

Answer

$$Sat(\forall \bigcirc f) = \{ s \in S \mid succ(s) \subseteq Sat(f) \}.$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \exists (f \cup f) \mid \forall \bigcirc f \mid \forall (f \cup f)$$

Question

What is $Sat(\forall \bigcirc f)$?

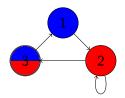
Answer

$$Sat(\forall \bigcirc f) = \{ s \in S \mid succ(s) \subseteq Sat(f) \}.$$

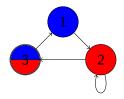
Alternative view

Labels those states, with all direct successors labelled with f, with $\forall \bigcirc f$.

$\forall \bigcirc \mathsf{red}$



$\forall \bigcirc \mathsf{red}$



$$1 \mapsto \{ \forall \bigcirc \mathsf{red} \}$$
$$2 \mapsto \{\mathsf{red}, \forall \bigcirc \mathsf{red} \}$$
$$3 \mapsto \{\mathsf{red}\}$$

The formulas are defined by

$$f ::= a \mid f \land f \mid \neg f \mid \exists \bigcirc f \mid \forall \bigcirc f \mid \exists (f \cup f) \mid \forall (f \cup f)$$

Question

What is $Sat(\exists (f \cup g))$?

$$s \in Sat(\exists (f \cup g))$$

iff $s \models \exists (f \cup g)$
iff $\exists p \in Paths(s) : p \models f \cup g$
iff $\exists p \in Paths(s) : \exists i \ge 0 : p[i] \models g \land \forall 0 \le j < i : p[j] \models f$
iff $\exists p \in Paths(s) : p[0] \models g \lor (\exists i \ge 1 : p[i] \models g \land \forall 0 \le j < i : p[j] \models f)$
iff $\exists p \in Paths(s) : p[0] \models g \lor$
 $(p[0] \models f \land \exists i \ge 1 : p[i] \models g \land \forall 1 \le j < i : p[j] \models f)$
iff $s \models g \lor (s \models f \land \exists s \rightarrow t : t \models \exists (f \cup g))$
iff $s \in Sat(g) \lor (s \in Sat(f) \land \exists t \in succ(s) : t \in Sat(\exists (f \cup g))))$
iff $s \in Sat(g) \cup \{s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset\}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

 $T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

$$T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

The set $Sat(\exists (f \cup g))$ is the smallest subset T of S such that

 $T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

As we have seen

 $s \in Sat(\exists (f \cup g))$ iff $s \in Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap Sat(\exists (f \cup g)) \neq \emptyset \}$

Hence, the set $Sat(\exists (f \cup g))$ is a subset T of S such that

$$T = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

The set $Sat(\exists (f \cup g))$ is the smallest subset T of S such that

$$T = Sat(g) \cup \set{s \in Sat(f) \mid succ(s) \cap T \neq \emptyset}$$

Question

Does such a smallest subset exist?

A function $G: 2^S \rightarrow 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

A function $G: 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Knaster's fixed point theorem

If the set S is finite and the function $G : 2^S \to 2^S$ is monotone, then there exists a smallest $T \in 2^S$ such that G(T) = T.

A function $G: 2^S \to 2^S$ is monotone if for all $T, U \in 2^S$,

if $T \subseteq U$ then $G(T) \subseteq G(U)$.

Knaster's fixed point theorem

If the set S is finite and the function $G: 2^S \to 2^S$ is monotone, then there exists a smallest $T \in 2^S$ such that G(T) = T.

This smallest $T \in 2^{S}$ is known as the *least fixed point* of *G*.

- Polish mathematician
- Received his Ph.D. degree from University of Warsaw
- Proved his fixed point theorem in 1928

Source: Konrad Jacobs

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \left\{ egin{array}{cc} \emptyset & ext{if } n=0 \ G(G_{n-1}) & ext{otherwise} \end{array}
ight.$$

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \left\{ egin{array}{cc} \emptyset & ext{if } n=0 \ G(G_{n-1}) & ext{otherwise} \end{array}
ight.$$

Proposition

For all $n \in \mathbb{N}$, $G_n \subseteq G_{n+1}$.

Knaster's fixed point theorem

Definition

For each $n \in \mathbb{N}$, the set G_n is defined by

$$G_n = \begin{cases} \emptyset & \text{if } n = 0\\ G(G_{n-1}) & \text{otherwise} \end{cases}$$

Proposition

For all $n \in \mathbb{N}$, $G_n \subseteq G_{n+1}$.

Proof

We prove this by induction on n. In the base case, n = 0, we have that

$$G_0 = \emptyset \subseteq G_1$$

In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq G_n$. Since G is monotone, we have that

$$G_n = G(G_{n-1}) \subseteq G(G_n) = G_{n+1}.$$

 $G_m = G_{m+1}$ for some $m \in \mathbb{N}$.

 $G_m = G_{m+1}$ for some $m \in \mathbb{N}$.

Proof

Suppose that *S* contains *m* elements. Towards a contradiction, assume that $G_n \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_n \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_n contains at least *n* elements. Therefore, G_{m+1} contains more elements than *S*. This contradicts that $G_{m+1} \subseteq S$.

 $G_m = G_{m+1}$ for some $m \in \mathbb{N}$.

Proof

Suppose that *S* contains *m* elements. Towards a contradiction, assume that $G_n \neq G_{n+1}$ for all $n \in \mathbb{N}$. Then $G_n \subset G_{n+1}$ for all $n \in \mathbb{N}$. Hence, G_n contains at least *n* elements. Therefore, G_{m+1} contains more elements than *S*. This contradicts that $G_{m+1} \subseteq S$.

We denote the G_m with $G_m = G_{m+1}$ by fix(G).

For all $T \subseteq S$, if G(T) = T then $fix(G) \subseteq T$.

For all $T \subseteq S$, if G(T) = T then $fix(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $G_n \subseteq T$ by induction on n. In the base case, n = 0, we have that $G_0 = \emptyset \subseteq T$. In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_n = G(G_{n-1}) \subseteq G(T) = T$. Since $fix(G) = G_m$ for some $m \in \mathbb{N}$, we can conclude that $fix(G) \subseteq T$.

For all
$$T \subseteq S$$
, if $G(T) = T$ then $fix(G) \subseteq T$.

Proof

First, we prove that for all $n \in \mathbb{N}$, $G_n \subseteq T$ by induction on n. In the base case, n = 0, we have that $G_0 = \emptyset \subseteq T$. In the inductive case, we have $n \ge 1$. By induction, $G_{n-1} \subseteq T$. Since G is monotone, $G_n = G(G_{n-1}) \subseteq G(T) = T$. Since $fix(G) = G_m$ for some $m \in \mathbb{N}$, we can conclude that $fix(G) \subseteq T$.

Corollary

fix(G) is the smallest subset T of S such that G(T) = T.

The function $F: 2^S \to 2^S$ is defined by

 $F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$

Smallest subset

Definition

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

F is monotone.

The function $F: 2^S \to 2^S$ is defined by

$$F(T) = Sat(g) \cup \{ s \in Sat(f) \mid succ(s) \cap T \neq \emptyset \}$$

Proposition

F is monotone.

Proof

Let T, $U \in 2^{S}$. Assume that $T \subseteq U$. Let $s \in F(T)$. It remains to prove that $s \in F(U)$. Then $s \in Sat(g)$ or $s \in Sat(f)$ and $succ(s) \cap T = \emptyset$. We distinguish two cases. If $s \in Sat(g)$ then $s \in F(U)$. If $s \in Sat(f)$ and $succ(s) \cap T = \emptyset$ then $succ(s) \cap U = \emptyset$ since $T \subseteq U$. Hence, $s \in F(U)$.

Sat(f): switch (f) { return { $s \in S \mid a \in \ell(s)$ } case a : case $f \wedge g$: return $\operatorname{Sat}(f) \cap \operatorname{Sat}(g)$ case $\neg f$: return $S \setminus \operatorname{Sat}(f)$ case $\exists \bigcirc f$: return $\{s \in S \mid \operatorname{succ}(s) \cap \operatorname{Sat}(f) \neq \emptyset\}$ case $\forall \bigcirc f$: return $\{s \in S \mid \text{succ}(s) \subseteq \text{Sat}(f)\}$ case $\exists (f \cup g) : T = \emptyset$ while $T \neq F(T)$ T = F(T)return Tcase $\forall (f \cup g) : T = \emptyset$ while $T \neq G(T)$ T = G(T)return T

Submit the final version of your project proposal before Tuesday February 25.