Concurrency EECS 4315

www.eecs.yorku.ca/course/4315/

- Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes and Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.
- Mary Campione, Kathy Walrath and Alison Huml. The Java Tutorial. Lesson: Threads: Doing Two or More Tasks At Once.
- James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha and Alex Buckley. The Java Language Specification. 2015.

Concurrency

Threads can exchange information by accessing and updating shared attributes.

Question

One thread executes
v = 1;
v = v + 1;
and another thread executes
$\mathrm{v}=0$;
What is the final value of v ?

Concurrency

Threads can exchange information by accessing and updating shared attributes.

Question

One thread executes
v = 1;
v = v + 1;
and another thread executes
$\mathrm{v}=0$;
What is the final value of v ?

Answer

0,1 or 2 . This example shows that concurrency gives rise to nondeterminism.

Concurrency

Question

One thread executes

$$
v=v+1 ;
$$

and another thread executes
$\mathrm{v}=\mathrm{v}+1$;
If the initial value of v is 0 , then what is the final value of v ?

Concurrency

Question

One thread executes

$$
v=v+1
$$

and another thread executes
$\mathrm{v}=\mathrm{v}+1$;
If the initial value of v is 0 , then what is the final value of v ?

Answer
1 or 2.

Concurrency

Question

How can the final value of v be 1 ?

Concurrency

Question

How can the final value of v be 1 ?

Answer
 The assignment $\mathrm{v}=\mathrm{v}+1$ is not atomic.

Concurrency

Question

How can the final value of v be 1 ?

Answer

The assignment $\mathrm{v}=\mathrm{v}+1$ is not atomic.

0: getstatic
3: iconst_1
4: iadd
5: putstatic

Concurrency

Question

One thread executes
v = 0;
and another thread executes
v = Long.MAX_VALUE;
How many different final values can v have?

Concurrency

Question

One thread executes
v = 0;
and another thread executes
v = Long.MAX_VALUE;
How many different final values can v have?

Answer
4 (on 32-bit machines).

Concurrency

Question
How can v have 4 different final values?

Concurrency

Question
How can v have 4 different final values?

Answer

The assignments $\mathrm{v}=0$ and $\mathrm{v}=$ Long. MAX_VALUE may not be atomic (on 32 bit machines).

Thread creation

In Java, threads are created dynamically:
// create and initialize Thread object Thread thread = new Thread();
// execute run method of Thread object concurrently thread.start();

The class Thread is part of package java.lang (and, hence, does not need to be imported). Its API can be found at the URL
https://docs.oracle.com/javase/8/docs/api/java/lang/ Thread.html.

- public Thread(String name)

Initializes a new Thread object with the specified name as its name.

- public void start()

Causes this thread to begin execution; the Java virtual machine calls the run method of this thread.

- public void run()

This method does nothing and returns.

Printer

Question

Develop a Java class called Printer that is a Thread and prints its name 1000 times.

Printer

```
public class Printer extends Thread {
    public Printer(String name) {
        super(name);
    }
    public void run() {
        final int NUMBER = 1000;
        for (int i = 0; i < NUMBER; i++) {
        System.out.print(this.getName());
        }
    }
}
```

Question
Develop an app that creates two Printers with names 1 and 2 and run them concurrently.

```
public class TwoPrinters {
    public static void main(String[] args) {
    Printer one = new Printer("1");
    Printer two = new Printer("2");
        one.start();
        two.start();
    }
}
```

Two concurrent printers

Question
What is the output of the app?

Two concurrent printers

Question

What is the output of the app?

Answer

A sequence of 1000 1's and 2's (arbitrarily interleaved). This example shows that concurrency gives rise to nondeterminism.

Two concurrent printers

Question
What happens if we replace start with run in the app?

Two concurrent printers

Question

What happens if we replace start with run in the app?

Answer
Let's try it.

Two concurrent printers

Question

What happens if we replace start with run in the app?

Answer
Let's try it.

Answer

The output is a sequence of 1000 1's followed by 1000 2's

Java only supports single inheritance

The following is not allowed in Java.
public class Printer extends Applet, Thread
// create and initialize Runnable object
Runnable runnable = new ...();
// create and initialize Thread object Thread thread = new Thread(runnable);
// execute run method of Runnable object concurrently thread.start();

The interface Runnable is part of package java.lang (and, hence, does not need to be imported). Its API can be found at the URL https://docs.oracle.com/javase/8/docs/api/java/lang/ Runnable.html

Runnable is an interface

In Java, you cannot create instances of an interface.
public class Printer implements Runnable \{
\}
The assignment
Runnable printer = new Printer();
is valid since the class Printer implements the interface Runnable.

Printer

Question
Develop a Java class called Printer that implements Runnable and prints the thread's name 1000 times.

Printer

```
public class Printer implements Runnable {
    public void run() {
        final int NUMBER = 1000;
        for (int i = 0; i < NUMBER; i++) {
            System.out.print(Thread.currentThread().getName());
        }
    }
}
```

Question
Develop an app that creates two Printers with names 1 and 2 and run them concurrently.

Printer

```
public class TwoPrinters {
    public static void main(String[] args)
        {
        Printer printer = new Printer();
        Thread one = new Thread(printer, "1");
        Thread two = new Thread(printer, "2");
        one.start();
        two.start();
    }
}
```


Printer

In particular when the run method is small, one might use an anonymous class.

An introduction to anonymous classes can be found here.

Printer

```
public static void main(String[] args) {
    for (int i = 1; i <= 2; i++) {
        String name = "" + i;
        (new Thread () {
        @Override
        public void run() {
            final int NUMBER = 1000;
            for (int i = 0; i < NUMBER; i++) {
                System.out.print(name);
            }
        }
        }).start();
    }
}
```


Incrementer

Question

Develop a Java class called Incrementer that is a Thread and increments a shared static attribute named value.

Incrementer

```
public class Incrementer extends Thread {
    public static int value = 0;
    public void run () {
        Incrementer.value++;
    }
}
```


Incrementer

Question
Develop an app that creates two Incrementers and run them concurrently. Assert that the final value of value is two.

```
public class TwoIncrementers {
    public static void main(String[] args) {
        try {
            Incrementer one = new Incrementer();
            Incrementer two = new Incrementer();
            one.start();
            two.start();
            one.join();
            two.join();
            assert Incrementer.value == 2;
            } catch (InterruptedException e) {}
    }
}
```


Using JPF

We can use JPF to check whether the assertion hold for each execution.
target=TwoIncrementers
classpath=<path to TwoIncrementers.class>

Using JPF

JavaPathfinder core system v8.0 (rev d772dfa80ea692f916aa6
$==$ sys
TwoIncrementers.main()
===1 sea1
==10) errc gov.nasa.jpf.vm.NoUncaughtExceptionsProperty
java.lang.AssertionError
at TwoIncrementers.main(TwoIncrementers.java:7)

Using jpf-visual

Install jpf-shell and jpf-visual.
target=TwoIncrementers
classpath=<path to TwoIncrementers.class>
sourcepath=<path to TwoIncrementers.java>
@using jpf-visual
report.errorTracePrinter.property_violation=trace report.publisher+=, errorTracePrinter
report.errorTracePrinter.class=ErrorTracePrinter shell=gov.nasa.jpf.shell.basicshell.BasicShell shell. panels+=, errorTrace
shell. panels.errorTrace=ErrorTracePanel

jpf-visual

https://www.youtube.com/watch?v=mrgsFxUI88I
jpf-visual

How many different executions?

Question

One thread prints 1 one. Another thread prints 1 two. How many different executions are there?

How many different executions?

Question

One thread prints 1 one. Another thread prints 1 two. How many different executions are there?

Answer

2.

How many different executions?

Question
One thread prints 2 ones. Another thread prints 2 twos. How many different executions are there?

How many different executions?

Question
One thread prints 2 ones. Another thread prints 2 twos. How many different executions are there?

Answer
 6.

How many different executions?

Question
One thread prints 3 ones. Another thread prints 3 twos. How many different executions are there?

How many different executions?

Question
One thread prints 3 ones. Another thread prints 3 twos. How many different executions are there?

Answer
 20.

How many different executions?

Question
One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

How many different executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

Answer

204815162698948971433516250298082504439642488798139 703382038263767174818620208375582893299418261020620 146476631999802369241548179800452479201804754976926 157856301289663432064714851152395251651227768588611 539546256147907378668464154444533617613770073855673 814589630071306510455959514479888746206368718514551 828551173166276253663773084682932255389049743859481 431755030783796444370810085163724827462791417016619 883764840843541430817785947037746565188475514680749 694674923803033101818723298009668567458560252549910 118113525353465888794196665367490451130611009631190 6270342502293155911108976733963991149120.

How many executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

How many executions?

Question

One thread prints 1000 ones. Another thread prints 1000 twos. How many different executions are there?

Answer

$$
\binom{2000}{1000}=\frac{2000!}{1000!1000!}
$$

How many executions?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

How many executions?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2 n}{n}$.

How many executions?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2 n}{n}$.

Question
Can there be fewer?

How many executions?

Question

One thread executes n instructions. Another thread executes n instructions. How many different executions are there?

Answer

At most $\binom{2 n}{n}$.

Question

Can there be fewer?

Answer

Yes. For example, if each instruction is $x=1$ then there is only one execution.

How many executions?

Question
There are k threads. Each thread executes n instructions. How many different executions are there?

How many executions?

Answer

$$
\binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!}
\end{aligned}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!} \\
& =\frac{(k n)!}{(n!)^{k}}
\end{aligned}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!} \\
& =\frac{(k n)!}{(n!)^{k}} \\
& =\frac{(k n)(k n-1) \cdots(k n-n+1)}{n!} \cdots \frac{2 n(2 n-1) \cdot(n+1)}{n!} \frac{n!}{n!}
\end{aligned}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!} \\
& =\frac{(k n)!}{(n!)^{k}} \\
& =\frac{(k n)(k n-1) \cdots(k n-n+1)}{n!} \cdots \frac{2 n(2 n-1) \cdot(n+1)}{n!} \frac{n!}{n!} \\
& \geq\left(\frac{2 n(2 n-1) \cdot(n+1)}{n!}\right)^{k-1}
\end{aligned}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!} \\
& =\frac{(k n)!}{(n!)^{k}} \\
& =\frac{(k n)(k n-1) \cdots(k n-n+1)}{n!} \cdots \frac{2 n(2 n-1) \cdot(n+1)}{n!} \frac{n!}{n!} \\
& \geq\left(\frac{2 n(2 n-1) \cdot(n+1)}{n!}\right)^{k-1} \\
& =\left(\frac{2 n(2 n-1) \cdot(n+1)}{n(n-1) \cdots 2}\right)^{k-1}
\end{aligned}
$$

How many executions?

Answer

$$
\begin{aligned}
& \binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{2 n}{n} \\
& =\frac{(k n)!}{n!((k-1) n)!} \frac{((k-1) n)!}{n!((k-2) n)!} \cdots \frac{(2 n)!}{n!n!} \\
& =\frac{(k n)!}{(n!)^{k}} \\
& =\frac{(k n)(k n-1) \cdots(k n-n+1)}{n!} \cdots \frac{2 n(2 n-1) \cdot(n+1)}{n!} \frac{n!}{n!} \\
& \geq\left(\frac{2 n(2 n-1) \cdot(n+1)}{n!}\right)^{k-1} \\
& =\left(\frac{2 n(2 n-1) \cdot(n+1)}{n(n-1) \cdots 2}\right)^{k-1} \\
& \geq n^{k-1}
\end{aligned}
$$

How many executions?

Question

There are k threads. Each thread executes n instructions. How many different executions are there?

Answer

In the worst case, more than n^{k-1}.

Conclusion

The number of different executions may grow exponential in the number of threads.

