
EECS 4315 3.0 Mission Critical Systems
A Solution of Midterm

9:00–10:00 on March 2, 2020

1 (2 marks)

Why do we verify systems? (The answer is not “to find bugs.”)
Answer: It is all about money and safety (slides and page 1 and 2 of the textbook).
Marking scheme: 2 marks for the mention of either money or safety.

2 (4 marks)

Model checking and theorem proving are two approaches to verification.

(a) Mention three advantages of model checking over theorem proving.

1.

2.

3.

Answer:

– Model checking is automatic.

– Model checking is (relatively) fast.

– Model checking provides counter examples.

– Temporal logics can easily express many properties.

(Section 1 of the paper by Clarke.)

Marking scheme: 1 mark for each advantage. (The textbook mentions other strengths of
model checking as well, but some of them are shared with theorem proving.)

(b) Mention one disadvantage of model checking.

Answer: The state space explosion problem (slides, Section 1 of the paper by Clarke and
page 15 of the textbook).

Marking scheme: 1 mark for the mention of the state space explosion problem.

1

3 (5 marks)

Assume I am flipping a coin and I become happy if I flip heads twice in a row. Model this as a
labelled transition system. The labelled transition system has three labels: heads, tails, and happy.
Once two heads in a row have occurred, the system should transition to a state that is labelled with
happy and that has a transition to itself.

(a) Draw the labelled transition system.

Answer: There are many different ways to capture this system. For example, the following
does.

heads

tails

heads happy

Marking scheme: 0.5 mark for a state labelled happy with a self loop, 0.5 mark for two
states labelled heads, 0.5 mark for one state labelled tails, 0.5 mark for correct transitions
between the states labelled heads and happy.

(b) Formally define the labelled transition system drawn in part (a).

Answer: 〈{1, 2, 3, 4, 5}, {heads, tails, happy}, {1}, {(1, 2), (1, 3), (2, 3), (3, 2), (3, 3), (2, 4),
(4, 5), (5, 5)}, {1 7→ ∅, 2 7→ {heads}, 3 7→ {tails}, 4 7→ {heads}, 5 7→ {happy}}〉

Marking scheme: 0.5 mark if the set of states corresponds to the set of vertices drawn in
part (a). 0.5 mark for {heads, tails, happy} as the set of labels. 0.5 mark if the transitions
form a set of state pairs. 0.5 mark if the set of transitions corresponds to the set of edges
drawn in part (a). 0.5 mark if the labelling function maps states to sets of labels. 0.5 mark if
the labelling function corresponds to the labelling of part (a).

4 (2 marks)

Consider a traffic light. Give an LTL formula that formalizes the requirement that the light must
change colour in the following sequence: red, green, and amber.
Answer: �((red⇒©green) ∧ (green⇒©amber) ∧ (amber⇒©red))

Marking scheme: 0.5 mark for using �. 0.5 mark for using©. 1 mark for an LTL formula that
captures the requirement correctly.

2

5 (5 marks)
Consider the following labelled transition system.

1 2

3 4

Note that states 1 and 2 are both initial. States 1 and 2 have label a. States 2 and 3 have label
b. State 4 has label c. For each of the following LTL formulas, determine if that formula holds for
the above labelled transition system. A simple yes or no suffices.

(a) a

(b) b

(c) ©b

(d) ©© c

(e) ©©¬a

(f) ♦b

(g) �(a ∨ c)

(h) a U b

(i) b U a

(j) a U (b U c)

Answer:

(a) yes

(b) no

(c) yes

(d) no

(e) yes

3

(f) yes

(g) no

(h) yes

(i) yes

(j) no

Marking scheme: 0.5 mark for each correct answer.

6 (3 marks)
Let f be an arbitrary LTL formula. Which of the following equivalences hold? If the equivalence
holds, give a proof. If the equivalence does not hold, provide a labelled transition system (and a
specific choice for f) and argue that one of the two LTL formulas holds and the other LTL formula
does not hold.

(a) �f ≡ f ∧©�f

Answer: The formulas are equivalent. Let TS be an arbitrary labelled transition system. Let
p be a path starting in an initial state. Then

p |= �f

iff ∀i ≥ 0 : p[i..] |= f

iff p[0..] |= f and ∀i ≥ 1 : p[i..] |= f

iff p |= f and ∀i ≥ 0 : p[(i + 1)..] |= f

iff p |= f and ∀i ≥ 0 : p[1..][i..] |= f

iff p |= f and p[1..] |= �f

iff p |= f and p |=©�f

iff p |= f ∧©�f

Marking scheme: 0.5 mark for the correct characterization of �f . 0.5 mark for the correct
manipulation of p[(i + 1)..] and p[1..][i..]. 0.5 mark extra if the overall proof is correct.

(b) ♦f ≡ f ∨©♦© f

Answer: The formulas are not equivalent. For f we choose the atomic propostion a. We
consider the following labelled transition system.

1 2 3

4

and the following labelling function

`(1) = ∅
`(2) = {a}
`(3) = ∅

This labelled transition system satisfies ♦a since state 2 has label a. However, the labelled
transition system does not satisfy a ∨©♦© a since the first and third state are not labelled
a.

Marking scheme: 0.5 mark for making an appropriate choice for f . 0.5 mark for an ap-
propriate labelled transition system. 0.5 mark for arguing why the labelled transition system
satisfies the one property but not the other.

7 (4 marks)
We extend the syntax of CTL with state formulas of the form ∃(f R g), where f and g are state
formulas. For a state s, we define

s |= ∃(f R g) iff ∃p ∈ Paths(s) : ∀i ≥ 0 : (p[i] |= g or ∃0 ≤ j < i : p[j] |= f)

(a) Characterize Sat(∃(f R g)) in terms to Sat(f), Sat(g), succ and Sat(∃(f R g)). Provide a
derivation of your characterization (marks will only be given for the derivation).

Answer:

s ∈ Sat(∃(f R g))

iff s |= ∃(f R g)

iff ∃p ∈ Paths(s) : p |= f R g

iff ∃p ∈ Paths(s) : ∀i ≥ 0 : (p[i] |= g or ∃0 ≤ j < i : p[j] |= f)

iff ∃p ∈ Paths(s) : p[0] |= g and ∀i ≥ 1 : (p[i] |= g or ∃0 ≤ j < i : p[j] |= f)

iff ∃p ∈ Paths(s) : p[0] |= g and ∀i ≥ 1 : (p[i] |= g or p[0] |= f or ∃1 ≤ j < i : p[j] |= f)

iff ∃p ∈ Paths(s) : p[0] |= g and (p[0] |= f or ∀i ≥ 1 : (p[i] |= g or ∃1 ≤ j < i : p[j] |= f))

iff ∃p ∈ Paths(s) : s |= g and (s |= f or ∀i ≥ 0 : (p[i + 1] |= g or ∃0 ≤ j < i : p[j + 1] |= f))

iff s |= g and (s |= f or ∃p ∈ Paths(s) : ∀i ≥ 0 : (p[i + 1] |= g or ∃0 ≤ j < i : p[j + 1] |= f))

iff s |= g and (s |= f or ∃s→ t : ∃p ∈ Paths(t) : ∀i ≥ 0 : (p[i] |= g or ∃0 ≤ j < i : p[j] |= f)

iff s |= g and (s |= f or ∃s→ t : t |= ∃(f R g))

Hence,

Sat(∃(f R g)) = Sat(g) ∩ (Sat(f) ∪ { s ∈ S | succ(s) ∩ Sat(∃(f R g)) 6= ∅ }).

Marking scheme: 2 marks for a correct derivation. 1 mark for a derivation that seems
correct but lacks some detail (several fewer steps than in the sample solution). 0.5 mark for
a derivation that contains several correct steps.

5

(b) Extend the algorithm to compute Sat with the case for ∃(f R g).

Sat(f):
switch (f) {
case a : return { s ∈ S | a ∈ `(s) }
case f ∧ g : return Sat(f) ∩ Sat(g)
...
case ∃(f R g) :

Answer:

T = ∅
while T 6= F (T)
T = F (T)

return T

where
F (T) = Sat(g) ∩ (Sat(f) ∪ { s ∈ S | succ(s) ∩ T 6= ∅ }).

Marking scheme: 0.5 mark for a loop. 0.5 mark extra if the answer is correct.

(c) Provide the relevant definition(s) and theorem(s) that are needed to prove that your algorithm
for the case ∃(f R g) is correct. (You do not have to prove the theorem(s).)

Answer: The function F : 2S → 2S is defined by

F (T) = Sat(g) ∩ (Sat(f) ∪ { s ∈ S | succ(s) ∩ T 6= ∅ }).

The function F is monotone, that is, for all T , U ∈ 2S , if T ⊆ U then F (T) ⊆ F (U).

Marking scheme: 0.5 mark for the definition of F . 0.5 mark for the monotonicity of F . If F
was already provided in part (b) and is not provided here, then 1 mark for the monotonicity
of F .

6

Definitions
Definition 1. A labelled transition system is a tuple 〈S, L, I,→, `〉 consisting of

• a set S of states,

• a set L of labels,

• a set I ⊆ S of initial states,

• a transition relation→ ⊆ S × S, and

• a labelling function ` : S → 2L.

Definition 2. The set succ(s) of successors of the state s is defined by

succ(s) = { t ∈ S | s→ t }.

Definition 3. Linear temporal logic (LTL) is defined by the grammar

f ::= a | f ∧ f | ¬f | ©f | f U f

where a ∈ L.

We use the following syntactic sugar.

f ∨ g = ¬(¬f ∧ ¬g)
true = a ∨ ¬a
♦f = true U f (eventually f)
�f = ¬♦¬f (always f)

Definition 4. Paths(s) is the set of (execution) paths starting in state s. Let p ∈ Paths(s) and
n ≥ 0. Then p[n] is the (n + 1)th state of the path p and p[n..] is the suffix of p starting with the
(n + 1)th state.

Definition 5. The relation |= is defined by

p |= a iff a ∈ `(p[0])
p |= f ∧ g iff p |= f and p |= g
p |= ¬f iff not(p |= f)
p |=©f iff p[1..] |= f

p |= f U g iff ∃i ≥ 0 : p[i..] |= g and ∀0 ≤ j < i : p[j..] |= f

and
〈S, L, I,→, `〉 |= f iff ∀s ∈ I : ∀p ∈ Paths(s) : p |= f

7

Definition 6. Computation tree logic (CTL) is defined as follows. The state formulas are defined
by

f ::= a | f ∧ f | ¬f | ∃g | ∀g

where a ∈ L. The path formulas are defined by

g ::=©f | f U f

Definition 7. The relation |= is defined by

s |= a iff a ∈ `(s)
s |= f ∧ g iff s |= f and s |= g
s |= ¬f iff not(s |= f)
s |= ∃g iff ∃p ∈ Paths(s) : p |= g
s |= ∀g iff ∀p ∈ Paths(s) : p |= g

and
p |=©f iff p[1] |= f

p |= f U g iff ∃i ≥ 0 : p[i] |= g and ∀0 ≤ j < i : p[j] |= f

and
〈S, L, I,→, `〉 |= f iff ∀s ∈ I : s |= f

Definition 8. The satisfaction set Sat(f) is defined by

Sat(f) = { s ∈ S | s |= f }.

Definition 9. LTL/CTL formulas f and g are equivalent, denoted f ≡ g, if 〈S, L, I,→, `〉 |= f iff
〈S, L, I,→, `〉 |= g for all transition systems 〈S, L, I,→, `〉.

8

