
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

MIDI plugins with JUCE
EECS 4462 - Digital Audio

September 17, 2020

6

Important class: AudioProcessor
• Base class for audio plugins

• Your plugin class must inherit from AudioProcessor

• Must declare a global function called createPluginFilter()
that returns an instance of your plugin

class Arpeggiator : public AudioProcessor
{ … }

AudioProcessor* createPluginFilter()
{

return new Arpeggiator();
}

8

C++ info
• Class constructors work similar to Java

• Same name as the class
• Can have overloaded versions

• C++ also has destructors
• Run when an instance is destroyed
• Same name as class with a ~ in front

~Arpeggiator() {}

9

C++ info
• Declaring an object in C++ is enough to create an object

at run time

• The above creates an Arpeggiator object

• Such an object gets destroyed automatically when out of
scope

• To dynamically create objects, use pointers

Arpeggiator arp;

Arpeggiator *arp;
arp = new Arpeggiator();

10

C++ info
• C++ has no garbage collection

• You must delete dynamically created objects manually

• This will call the destructor before releasing the memory

• malloc, realloc, free etc. can also be used for
dynamic memory allocation

Arpeggiator *arp;
arp = new Arpeggiator();
delete arp;

12

Buffer processing
• In JUCE, processing takes place in buffers

• For audio plugins, this buffer contains a number of audio
samples (more in this in a week or two)

• For MIDI plugins, the buffer contains the MIDI events
that took place since the last buffer

• Time information is based on the sample rate, even in
the case of MIDI

• The duration of a buffer is
Sample Rate x Number of Samples in Buffer

13

Important function: prepareToPlay
• Called once before processing starts

• Can be used to initialize any variables in your plugin

• Also sets the Sample Rate

14

Important function: processBlock
• Called repeatedly

• All the processing (converting input to output) happens
in its body

• Receives an AudioBuffer and a MidiBuffer
• Only one of them will contain data based on the type of

the plugin

• Timing information is obtained from the AudioBuffer
even in the case of a MIDI plugin

15

C++ info
• Static functions in C++ are similar to static methods in

Java, but the syntax is a bit different

MidiMessage::noteOff (1, lastNoteValue)

